In this paper, we address the problem of prescribed fractional -curvature on a -dimensional sphere endowed with its standard CR structure. Since the associated variational problem is noncompact, we approach this issue using techniques of Bahri as the theory of critical points at infinity, using topological tools from generalizations of Morse theory. We prove some perturbative existence results.
@article{MRR_2020__1__47_0, author = {Ridha Yacoub}, title = {The fractional {CR} curvature equation on the three-dimensional {CR} sphere}, journal = {Mathematics Research Reports}, pages = {47--54}, publisher = {MathOA foundation}, volume = {1}, year = {2020}, doi = {10.5802/mrr.2}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.2/} }
TY - JOUR AU - Ridha Yacoub TI - The fractional CR curvature equation on the three-dimensional CR sphere JO - Mathematics Research Reports PY - 2020 SP - 47 EP - 54 VL - 1 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.2/ DO - 10.5802/mrr.2 LA - en ID - MRR_2020__1__47_0 ER -
Ridha Yacoub. The fractional CR curvature equation on the three-dimensional CR sphere. Mathematics Research Reports, Volume 1 (2020), pp. 47-54. doi : 10.5802/mrr.2. https://mrr.centre-mersenne.org/articles/10.5802/mrr.2/
[Bah89] Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, 182, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989, vi+I15+307 pages | MR | Zbl
[Bah96] An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J., Volume 81 (1996) no. 2, pp. 323-466 | DOI | MR | Zbl
[BC85] Vers une théorie des points critiques à l’infini, Bony-Sjöstrand-Meyer seminar, 1984–1985, École Polytech., Palaiseau, 1985, Exp. No. 8, 24 pages | MR | Zbl
[CW17] Perturbation of the CR fractional Yamabe problem, Math. Nachr., Volume 290 (2017) no. 4, pp. 534-545 | DOI | MR | Zbl
[EMM91] Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math., Volume 167 (1991) no. 1-2, pp. 1-106 | DOI | MR | Zbl
[FGMT15] An extension problem for the CR fractional Laplacian, Adv. Math., Volume 270 (2015), pp. 97-137 | DOI | MR | Zbl
[GG05] CR invariant powers of the sub-Laplacian, J. Reine Angew. Math., Volume 583 (2005), pp. 1-27 | DOI | MR | Zbl
[GMM18] Palais-Smale sequences for the fractional CR Yamabe functional and multiplicity results, Calc. Var. Partial Differential Equations, Volume 57 (2018) no. 6, p. Paper No. 152, 27 | DOI | MR | Zbl
[GSB08] Scattering and inverse scattering on ACH manifolds, J. Reine Angew. Math., Volume 622 (2008), pp. 1-55 | DOI | MR | Zbl
[HPT08] CR-invariants and the scattering operator for complex manifolds with boundary, Anal. PDE, Volume 1 (2008) no. 2, pp. 197-227 | DOI | MR | Zbl
[JL87] The Yamabe problem on CR manifolds, J. Differential Geom., Volume 25 (1987) no. 2, pp. 167-197 http://projecteuclid.org/euclid.jdg/1214440849 | DOI | MR | Zbl
[LW18] Existence results for the fractional Q-curvature problem on three dimensional CR sphere, Commun. Pure Appl. Anal., Volume 17 (2018) no. 3, pp. 849-885 | DOI | MR | Zbl
[MU02] A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9), Volume 81 (2002) no. 10, pp. 983-997 | DOI | MR | Zbl
[Yac02] On the scalar curvature equations in high dimension, Adv. Nonlinear Stud., Volume 2 (2002) no. 4, pp. 373-393 | DOI | MR | Zbl
[Yac11] Prescribing the Webster scalar curvature on spheres, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 23-24, pp. 1277-1280 | DOI | MR | Zbl
[Yac13] Existence results for the prescribed Webster scalar curvature on higher dimensional CR manifolds, Adv. Nonlinear Stud., Volume 13 (2013) no. 3, pp. 625-661 | DOI | MR | Zbl
Cited by Sources: