A new range of uniform resolvent estimates is obtained in the setting of the flat torus, improving previous results of Bourgain, Shao, Sogge and Yao. The arguments rely on the -decoupling theorem and multidimensional Weyl sum estimates.
@article{MRR_2020__1__31_0, author = {Jonathan Hickman}, title = {Uniform $L^p$ {Resolvent} {Estimates} on the {Torus}}, journal = {Mathematics Research Reports}, pages = {31--45}, publisher = {MathOA foundation}, volume = {1}, year = {2020}, doi = {10.5802/mrr.1}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.1/} }
Jonathan Hickman. Uniform $L^p$ Resolvent Estimates on the Torus. Mathematics Research Reports, Volume 1 (2020), pp. 31-45. doi : 10.5802/mrr.1. https://mrr.centre-mersenne.org/articles/10.5802/mrr.1/
[BD13] Improved estimates for the discrete Fourier restriction to the higher dimensional sphere, Illinois J. Math., Volume 57 (2013) no. 1, pp. 213-227 http://projecteuclid.org/euclid.ijm/1403534493 | DOI | MR | Zbl
[BD15a] New bounds for the discrete Fourier restriction to the sphere in 4D and 5D, Int. Math. Res. Not. IMRN (2015) no. 11, pp. 3150-3184 | MR | Zbl
[BD15b] The proof of the decoupling conjecture, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 351-389 | DOI | MR | Zbl
[Bou93] Eigenfunction bounds for the Laplacian on the -torus, Internat. Math. Res. Notices (1993) no. 3, pp. 61-66 | DOI | MR | Zbl
[Bou97] Analysis results and problems related to lattice points on surfaces, Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995) (Contemp. Math.), Volume 208, Amer. Math. Soc., Providence, RI, 1997, pp. 85-109 | DOI | MR | Zbl
[Bou13] Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces, Israel J. Math., Volume 193 (2013) no. 1, pp. 441-458 | DOI | MR | Zbl
[BSSY15] On -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds, Comm. Math. Phys., Volume 333 (2015) no. 3, pp. 1483-1527 | DOI | MR | Zbl
[DSFKS14] On resolvent estimates for Laplace-Beltrami operators on compact manifolds, Forum Math., Volume 26 (2014) no. 3, pp. 815-849 | DOI | MR | Zbl
[Guo12] On lattice points in large convex bodies, Acta Arith., Volume 151 (2012) no. 1, pp. 83-108 | DOI | MR | Zbl
[Hla50] Über Integrale auf konvexen Körpern. I, Monatsh. Math., Volume 54 (1950), pp. 1-36 | DOI | MR | Zbl
[KL19] Sharp Resolvent Estimates Outside of the Uniform Boundedness Range, Commun. Math. Phys. (2019) https://link.springer.com/article/10.1007/s00220-019-03536-y | Zbl
[KN91] Lattice points in large convex bodies, Monatsh. Math., Volume 112 (1991) no. 1, pp. 61-72 | DOI | MR | Zbl
[KN92] Lattice points in large convex bodies. II, Acta Arith., Volume 62 (1992) no. 3, pp. 285-295 | DOI | MR | Zbl
[KRS87] Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., Volume 55 (1987) no. 2, pp. 329-347 | DOI | MR | Zbl
[Mül99] Lattice points in large convex bodies, Monatsh. Math., Volume 128 (1999) no. 4, pp. 315-330 | DOI | MR | Zbl
[She01] On absolute continuity of the periodic Schrödinger operators, Internat. Math. Res. Notices (2001) no. 1, pp. 1-31 | DOI | MR | Zbl
[Sog88] Concerning the norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-138 | DOI | MR | Zbl
[Sog17] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 210, Cambridge University Press, Cambridge, 2017, xiv+334 pages | DOI | MR | Zbl
[Ste93] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993, xiv+695 pages (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl
[Tao04] Some recent progress on the restriction conjecture, Fourier analysis and convexity (Appl. Numer. Harmon. Anal.), Birkhäuser Boston, Boston, MA, 2004, pp. 217-243 | DOI | MR | Zbl
[TV00] A bilinear approach to cone multipliers. I. Restriction estimates, Geom. Funct. Anal., Volume 10 (2000) no. 1, pp. 185-215 | DOI | MR | Zbl
Cited by Sources: