We prove a dichotomy regarding the behavior of one-parameter unipotent flows on quotients of semisimple lie groups under time change. We show that if acting on is such a flow it satisfies exactly one of the following:
The full details will appear in a later publication.
@article{MRR_2023__4__11_0, author = {Elon Lindenstrauss and Daren Wei}, title = {Time change for unipotent flows and rigidity}, journal = {Mathematics Research Reports}, pages = {11--22}, publisher = {MathOA foundation}, volume = {4}, year = {2023}, doi = {10.5802/mrr.15}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.15/} }
TY - JOUR AU - Elon Lindenstrauss AU - Daren Wei TI - Time change for unipotent flows and rigidity JO - Mathematics Research Reports PY - 2023 SP - 11 EP - 22 VL - 4 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.15/ DO - 10.5802/mrr.15 LA - en ID - MRR_2023__4__11_0 ER -
Elon Lindenstrauss; Daren Wei. Time change for unipotent flows and rigidity. Mathematics Research Reports, Volume 4 (2023), pp. 11-22. doi : 10.5802/mrr.15. https://mrr.centre-mersenne.org/articles/10.5802/mrr.15/
[1] On rigidity properties of time-changes of unipotent flows, 2022 (preprint arXiv:2209.01253)
[2] New -automorphisms and a problem of Kakutani, Israel J. Math., Volume 24 (1976) no. 1, pp. 16-38 | DOI | MR | Zbl
[3] Anti-classification results for the Kakutani equivalence relation, 2021 (preprint arXiv:2109.06086)
[4] Lie algebras, Dover Publications, Inc., New York, 1979, ix+331 pages (Republication of the 1962 original) | MR
[5] Kakutani equivalence of unipotent flows, Duke Math. J., Volume 170 (2021) no. 7, pp. 1517-1583 | DOI | MR | Zbl
[6] Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 1, p. 104-157, 231 | MR
[7] Strong spectral gaps for compact quotients of products of , J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 2, pp. 283-313 | DOI | MR | Zbl
[8] Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 451-494 | DOI | MR | Zbl
[9] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 1996, xvi+604 pages | DOI | MR
[10] The action of unipotent groups in a lattice space, Mat. Sb. (N.S.), Volume 86(128) (1971), pp. 552-556 | MR
[11] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991, x+388 pages | DOI | MR
[12] Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005, xii+203 pages | MR
[13] Equivalence of measure preserving transformations, Mem. Amer. Math. Soc., 37, number 262, American Mathematical Society, 1982, xii+116 pages | DOI | MR
[14] Horocycle flows are loosely Bernoulli, Israel J. Math., Volume 31 (1978) no. 2, pp. 122-132 | DOI | MR | Zbl
[15] The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math., Volume 34 (1979) no. 1-2, p. 72-96 (1980) | DOI | MR | Zbl
[16] Some invariants of Kakutani equivalence, Israel J. Math., Volume 38 (1981) no. 3, pp. 231-240 | DOI | MR | Zbl
[17] Rigidity of horocycle flows, Ann. of Math. (2), Volume 115 (1982) no. 3, pp. 597-614 | DOI | MR | Zbl
[18] Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), Volume 118 (1983) no. 2, pp. 277-313 | DOI | MR | Zbl
[19] Rigidity of time changes for horocycle flows, Acta Math., Volume 156 (1986) no. 1-2, pp. 1-32 | DOI | MR | Zbl
[20] On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., Volume 165 (1990) no. 3-4, pp. 229-309 | DOI | MR | Zbl
[21] On Raghunathan’s measure conjecture, Ann. of Math. (2), Volume 134 (1991) no. 3, pp. 545-607 | DOI | MR | Zbl
[22] Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991) no. 1, pp. 235-280 | DOI | MR | Zbl
[23] Interactions between ergodic theory, Lie groups, and number theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), pp. 157-182 | DOI | MR | Zbl
[24] New time-changes of unipotent flows on quotients of Lorentz groups, J. Mod. Dyn., Volume 18 (2022), pp. 13-67 | DOI | MR | Zbl
[25] Rigidity of some translations on homogeneous spaces, Invent. Math., Volume 81 (1985) no. 1, pp. 1-27 | DOI | MR
[26] Zero-entropy affine maps on homogeneous spaces, Amer. J. Math., Volume 109 (1987) no. 5, pp. 927-961 | DOI | MR | Zbl
Cited by Sources: