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Time change for unipotent flows and rigidity

Elon Lindenstrauss & Daren Wei

(Recommended by Boris Hasselblatt)

Abstract. We prove a dichotomy regarding the behavior of one-parameter
unipotent flows on quotients of semisimple lie groups under time change.
We show that if u(1)

t acting on G1/Γ1 is such a flow it satisfies exactly one
of the following:
(1) The flow is loosely Kronecker, and hence isomorphic after an ap-

propriate time change to any other loosely Kronecker system.
(2) The flow exhibits the following rigid behavior: if the one-parameter

unipotent flow u(1)
t on G1/Γ1 is isomorphic after time change to

another such flow u(2)
t on G2/Γ2, then G1/Γ1 is isomorphic to G2/Γ2

with the isomorphism taking u(1)
t to u(2)

t and moreover the time
change is cohomologous to a trivial one.

The full details will appear in a later publication.

1. Introduction

Unipotent flows have some striking rigidity properties: for instance, every orbit is
recurrent [10], and every orbit closure as well as every invariant measure is homoge-
neous [20, 21, 22].

In particular, they are known to be rigid with respect to measurable isomorphisms.
To fix notations, for i = 1,2, let Gi be the identity component of a real semisimple lin-
ear algebraic group without compact factors, and let Γi < Gi be a lattice. Let Bi be the
Borelσ-algebra on Gi /Γi , let mi on Gi /Γi be the normalized Haar measure, and suppose
that u(i )

t are one parameter unipotent subgroups of Gi respectively. This means that

u(i )
t = exp(tu(i )) with u(i ) a nilpotent element of the Lie algebra gi of Gi (considered as a

matrix). In [17], Ratner showed that if G1 =G2 = SL2(R) and ψ : G1/Γ1 →G2/Γ2 is a mea-
surable isomorphism between the flows (G1/Γ1,B1,m1,u(1)

t ) and (G2/Γ2,B2,m2,u(2)
t ),

then ψ is automatically given by a very simple (and algebraic) form. Concretely, there
is an automorphism of algebraic groups Ψ : SL2(R) → SL2(R) and C ∈ SL2(R) so that
Γ2 = Ψ(Γ1), u(2)

t = CΨ(u(1)
t )C−1 so that ψ sends the coset [g ]Γ1 ∈ G1/Γ1 to [CΨ(g )]Γ2 .

By measurable isomorphism we mean that ψ is one-to-one and onto between conull
measurable subsets of Gi /Γi , sends m1 to m2 and intertwines with the corresponding
R-actions, i.e., for every t ∈R

ψ(u(1)
t .x) = u(2)

t .ψ(x) µ1-a.e..

This rigidity of measurable isomorphisms was generalized by Witte Morris [25, 26].
Rigidity of unipotent flows under measurable isomorphisms can also be deduced from
the much stronger measure classification results of Ratner in [20, 21] (this is explicitly
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mentioned by Ratner in [20, Cor. 6]). We refer the reader to Witte Morris’s book [12] for
more details and background.

The isomorphism rigidity theorem tells us that a weaker notion of isomorphism be-
tween two flows in the class of unipotent flows on quotients of semisimple groups, say
G1/Γ1 and G2/Γ2 implies a much stronger notion of isomorphism. Namely G1 and G2

are isogenous as algebraic groups, and if we chose G1 and G2 (as we may) so that Gi acts
faithfully1 on Gi /Γi , then in fact G1 and G2 need to be isomorphic with the isomorphism
taking Γ1 to Γ2 and u(1)

t to a conjugate of u(2)
t .

In this paper we allow a much weaker notion of equivalence between flows—known
as monotone equivalence (we shall also use interchangeably the term Kakutani equiv-
alence, though strictly speaking the latter term is most often used for a closely related
notion for Z-actions) and investigate if a similar rigidity holds. It turns out that for
this equivalence condition a rather striking dichotomy holds: one parameter unipotent
flows on quotients of semisimple groups fall into two categories:

• unipotent flows that are loosely Kronecker and hence are all monotone equiva-
lent to each other;

• the non loosely Kronecker unipotent flows where (the weak) monotone equiva-
lence implies the much stronger (algebraic) equivalence as above.

We stress that in the loosely Kronecker case monotone equivalence does not imply iso-
morphism as measure preserving flows. The full details will appear in a later publica-
tion. This reference also appeared at the very end of the abstract; we present here some
of the ingredients as well as an outline of the argument. An explicit classification of
which unipotent flows are loosely Kronecker was obtained by Kanigowski, Vinhage and
the second named author in [5] (see below).

Let (Xi ,Bi ,µi ) for i = 1,2 be two standard Borel probability measure spaces, and
let u(i )

t : Xi → Xi be an ergodic flow (R-action) on Xi preserving mi . The two flows

(Xi ,Bi ,µi ,u(i )
t ) are monotone (or Kakutani) equivalent if there is a one-to-one and

onto measurable map ψ : X ′
1 → X ′

2 with µi (Xi \ X ′
i ) = 0 (X ′

i ⊆ Xi ), and so that µ2 is in

the same measure class as ψ∗µ1, taking u(1)• -orbits to u(2)• -orbits preserving the order
structure, i.e., so that if x,u(1)

t .x ∈ X ′
1 with t > 0 then ψ(u(1)

t .x) = u(2)
τ .ψ(x) for τ > 0.

The condition that ψ preserves the order structure on the orbits is essential, as any two
ergodic flows will be orbit equivalent (by work of Ornstein and Weiss, this extends to
actions of general amenable groups).

Given an ergodic measure preserving flow (X ,B,µ,ut ) and a functionα ∈ L1+(X ,B,µ)
(one can think of 1/α as the time change velocity) we can define a new flow on X , mono-
tone equivalent to the original flow, via time change. This new flow uα,t is given by

uα,τ(x) = ut (x) where τ and t satisfy
∫ t

0
α(us x)d s = τ.

The new flow uα,t preserves a measure µα in the same measure class as µ, with dµα =
αdµ/(

∫
αdµ).

Monotone equivalence can be characterized in terms of time change: (X1,B1,µ,u(1)
t )

is monotone equivalent to (X2,B2,µ2,u(2)
t ) iff there is an α ∈ L1+(X1,B1,µ1) so that the

time changed system (X1,B1,µα1 ,u(1)
α,t ) is measurably isomorphic to (X2,B2,µ2,u(2)

t ). If∫
αdµ= 1 we will say that ψ is an even Kakutani equivalence; this implies that

ψ(u(1)
t x) = u(2)

t+ox (t )ψ(x) a.s. as t →∞.

1By replacing, if needed, the Gi with an appropriate quotient by a finite subgroup in the center of Gi .
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A monotone equivalence ψ : (X1,B1,µ,u(1)
t ) → (X2,B2,µ2,u(2)

t ) gives rise to a cocycle
τ(x, t ) on (X1,B1,µ,u(1)

t ) defined by the relation ψ(u(1)
t .x) = u(2)

τ(x,t ).ψ(x). Recall that two

cocycles τ,τ′ on X1 are cohomologous if there is a w : X1 →R so that

τ′(x, t ) = τ(x, t )+w(u(1)
t .x)−w(x).

Definition 1.1. Letψ andψ′ be two Kakutani equivalences between (X1,B1,µ,u(1)
t ) and

(X2,B2,µ2,u(2)
t ) inducing cocycles τ,τ′ on X1 as above. We sayψ is cohomologous toψ′

if there is a w : X1 →R

ψ′(x) = u(2)
w(x) ◦ψ(x).

In particular τ′(x, t ) = τ(x, t )+w(u(1)
t .x)−w(x) hence τ and τ′ are cohomologous.

In the context we study in this paper, i.e. when both X1 and X2 are quotients of
semisimple groups, and u(1)

t ,u(2)
t are one parameter unipotent groups, it is easy to “rec-

tify” any monotone equivalence between these flows to an even Kakutani equivalence
(see Proposition 3.1). Thus we may restrict ourselves to even Kakutani equivalences.
The following is our main theorem:

Theorem 1.2. For i = 1,2, let Gi be the identity component of a real semisimple linear
algebraic group without compact factors, Γi < Gi a lattice, mi the probability measure
on Gi /Γi induced by Haar measure on Gi , u(i )

t a one-parameter unipotent subgroup

of Gi , and gi the Lie algebra of Gi . Assume for i = 1,2, the group u(i )
t acts ergodically

on (Gi /Γi ,mi ) and that Gi acts faithfully on Gi /Γi . Then (G1/Γ1, m1, u(1)
t ) and (G2/Γ2,

m2, u(2)
t ) are Kakutani equivalent if and only if one of the following holds:

(A1) for both i = 1 and i = 2, we have that gi = sl2(R)⊕g′i and the generator of u(i )
t is

of the form (
0 1
0 0

)
×0 ∈ gi ;

(A2) there exist an isomorphism φ : G1 → G2 and C ∈ G2 such that φ(Γ1) = Γ2 and
φ(u(1)

t ) =Cu(2)
t C−1. Moreover, any even Kakutani equivalence between these sys-

tems is cohomologous to an actual isomorphism.

Recall that (X ,B,µ,Tt ) is loosely Kronecker2 if Tt is Kakutani equivalent to a linear
irrational flow on T2. Ratner in [14] showed that horocycle flows (i.e. the case of G =
SL2(R)) are loosely Kronecker and thus no rigidity results can hold for L1 time changes
of horocycle flows. Kanigowski, Vinhage and the second named author [5, Theorem 1.1]
showed that (G/Γ,m,ut ) in fact is loosely Kronecker if and only if (A1) holds. On the
other hand Ratner showed that if one assume the time change is done according to a
function α that is Hölder in the SO2(R)-direction then this implies isomorphism [19].
Further rigidity statements under assumptions, e.g., like in [19] can be found in [24, 1].

On the other hand, Ratner showed in [15] that if X1 = SL2(R)/Γ1 × SL2(R)/Γ1 and
u(1)

t = ((
1 t
0 1

)
,
(

1 t
0 1

))
then (X1,B,m1,u(1)

t ) is not loosely Kronecker hence some rigidity
holds—at the very least, the product of two horocycle flows is not monotone equiva-
lent to a single horocycle flow. Later [16] Ratner defined an invariant under monotone
equivalence she called the Kakutani invariant, and used it to show that a product of k
horocycle flows is not isomorphic to a product of ℓ horocycle flows if k ̸= ℓ. Ratner’s
invariant was calculated in the generality we consider in this paper by Kanigowski, Vin-
hage and the second named author in [5]. In particular, Ratner’s invariant turns out to

2Such systems are also known as zero entropy loosely Bernoulli or standard, though the latter term has
different meanings in different contexts.
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depend only on the group G1 and the one-parameter unipotent group u(1)
t , but not on

the lattice Γ1 <G1.
In her ICM1994 proceedings paper [23, p. 179], Ratner asked the following questions:

(1) Does there exist an L1-time change between product of horocycle flows on
SL2(R)×SL2(R) with different lattices?

(2) Does the isomorphism rigidity hold for smooth time changes of unipotent flows?

Our main theorem, Theorem 1.2, clearly answers the first question, and moreover
shows that except for the loosely Kronecker case no smoothness assumption on the
time changes is needed. In particular:

Corollary 1.3. Let G be an identity component of a real semisimple algebraic group, Γ<G
a lattice such that G acts faithfully on G/Γ, m the probability measure on G/Γ induced
by Haar measure on G and ut a one-parameter unipotent subgroup acting ergodically
on (G/Γ,m). Then (G/Γ,m,ut ) has time change rigidity if and only it is not loosely Kro-
necker.

In a recent paper, Gerber and Kunde [3] investigated the descriptive set theoretic
complexity of the general monotone equivalence problem for flows, showing that in full
generality one cannot classify measure preserving flows up to monotone equivalence
using any single (or indeed, countably many) invariants. In their paper they ask about
the special case of unipotent flows and Ratner’s Kakutani invariant. Our result provides
an answer for this question:

Corollary 1.4. Let G = SL2(R) × SL2(R), Γ1,Γ2 < G two non-conjugate lattices, u(i )
t =((

1 t
0 1

)
,
(

1 t
0 1

))
and mi the probability measure on G/Γi induced by Haar measure on G for

i = 1,2. Then (G/Γ1,m1,u(1)
t ) and (G/Γ2,m2,u(2)

t ) are not Kakutani equivalent while they
have the same value of Kakutani invariant.

2. Some preliminaries

In this section we present some notations that are needed to state the key steps in the
proof of Theorem 1.2.

2.1. (δ,ϵ, R)-two sides matchable. In analogy to Feldman’s f̄ metric we will make use
of the notion of (ϵ,δ,R)-two sided matching between two points. For more details and
background we refer the reader to [2, 6, 13, 16].

Let l denotes the Lebesgue measure on R and consider for R > 1 the orbit segment
IR (x) = {

Ts x : s ∈ [−R,R]
}
.

Definition 2.1 (cf. [16, Def. 1]). Let Tt be a flow on (X ,B,µ) and d a metric on X . Sup-
pose δ,ϵ ∈ (0,1) and R > 1. We say x, y ∈ X are (δ,ϵ, R)-two sides matchable if there
exist a subset A = A(x,y) ⊂ [−R,R] with l (A) > (1− ϵ)2R, and an increasing absolutely
continuous map h = h(x,y) : A → [−R,R], such that

(1) d(Th(t )x,Tt y) < δ for all t ∈ A;
(2) h(0) = 0 and 0 ∈ A;
(3) |h′(t )−1| < ϵ for all t ∈ A.

We call h an (δ,ϵ, R)-two sided matching between IR (x) to IR (y).

2.2. Our setup. In this paper, we take G to be the identity component of a real semisim-
ple linear algebraic group. See, for example, [11, Ch. 1] for a concise introduction to the
theory of such groups. Let g denote the Lie algebra of G .

Let dG denote a right invariant Riemannian metric on G , which also induces a Rie-
mannian metric dG/Γ on G/Γ. Moreover, the corresponding Riemannian volume on G
defines a Haar measure m̃ on G and thus induces a probability measure m on G/Γ.
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2.3. sl2(R)-triple, chain basis, and optimal matching function. In order to give a pre-
cise description of the divergence rate for nearby points in G/Γ, the following special
basis in Lie algebra g is very helpful. We make us of the standard notations about expo-
nential map, adjoint action and their relations; we refer the reader to [9] for more details.

Let u ∈ g be a nilpotent element; by Jacobson–Morozov theorem [4], there exists a
homomorphism ϕ : sl2(R) → g such that

ϕ

((
0 1
0 0

))
= u, ϕ

((
1 0
0 −1

))
= a, ϕ

((
0 0
1 0

))
= u−,

where a ∈ g is an R-diagonalizable element and u− ∈ g is a nilpotent element. We shall
use the following three one-parameter subgroups:

• the one-parameter unipotent subgroup

U = {
ut = exp(t u) : t ∈R}

;

• the corresponding one-parameter diagonalizable subgroup

A = {
at = exp(t a) : t ∈R}

;

• the “opposite” one-parameter subgroup

V = {
vt = exp(t u−) : t ∈R}

.

Let h = span
{

u,a,u− }
and let H < G be the connected Lie subgroup (in the Hausdorff

topology) generated by exp(h).

By the well-known classification of finite dimensional Lie representations of sl2(R),
we can find a basis of g of the form{

u,a,u−,x0,1, . . . ,xm1,1, . . . ,x0,n , . . . ,xmn ,n }
, (2.1)

where for each 1 ≤ j ≤ n, we have that x0, j , . . . ,xm j , j is an irreducible representation of h
under ad with adu xi , j = xi+1, j . We call this basis the chain basis for g with respect to h.

Given a subset W ⊂ g, we define Cg(W ) to be the common centralizer of all w ∈W , i.e.,

Cg(W ) = {
y ∈ g : adw(y) = 0 ∀w ∈W

}
. (2.2)

In order to find the best matching between the U -orbits of two nearby points, say
ut .x, and ut .w x one needs to modify the element of U used in one of these two points
to compensate for the shearing behaviour of the unipotent flow. Explicitly, we have the
following:

Lemma 2.2. Suppose

w = exp(ϑu− u−)exp(ϑa a) ∈G .

Then there exists a rational function φ(t ) (that depends on w) such that

exp(φ(t )u)w exp(−t u) = exp(ϑu−,t u−)exp(ϑa,t a), (2.3)

so that if |t | < ϵ ∣∣ϑ−1
u−

∣∣ and |ϑa| < ϵ then∣∣ϑa,t
∣∣< 2ϵ,

∣∣ϑu−,t
∣∣< 2 |ϑu− | .

Moreover,
∣∣φ′(t )−1

∣∣<p
ϵ.

This lemma can be viewed as a special case of what Ratner calls the H-property (see [18,
Def. 1]). Equation (2.3) and the following inequalities can be obtained by direct compu-
tation of 2×2 matrices. Cf. [5, Lemma 5.3] for more details.
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2.4. Kakutani–Bowen ball. We can represent elements g ∈G sufficiently close to iden-
tity using the following local chart based on our choice of basis for g in (2.1):

g = exp(ϑu(g )u)exp(ϑu− (g )u−)exp(ϑa(g )a)ğ , (2.4)

where

ğ = exp

(
n∑

j=1

m j∑
i=0

ϑi , j (g )xi , j

)
.

Definition 2.3.

(1) For ϵ> 0 and R > 1, let Bow(R,ϵ) be the set{
g ∈G : dG (exp(t u)g exp(−t u),e) < ϵ ∀t ∈ [−R,R]

}
,

and define for x ∈G/Γ the (R ,ϵ)-Bowen ball around x to be

Bow(R,ϵ, x) = Bow(R,ϵ).x.

(2) For ϵ> 0 and R > 1, let Kak(R,ϵ) be the set of g ∈G satisfying the following:
(a)

∣∣ϑu− (g )
∣∣< ϵ

R ,
(b)

∣∣ϑa(g )
∣∣< ϵ,

(c)
∣∣ϑu(g )

∣∣< ϵ,
(d) ğ ∈ Bow(R,ϵ),

where ϑu− , ϑa, ϑu and ğ as in (2.4). For x ∈G/Γ, we define the (R ,ϵ)-Kakutani–
Bowen ball around it to be

Kak(R,ϵ, x) = Kak(R,ϵ).x,

and similarly set Kak(R,ϵ, x̃) = Kak(R,ϵ).x̃ for x̃ ∈G .

It is easy to see using the “time change” given in Lemma 2.2 that if x ∈ G/Γ and y ∈
Kak(R,ϵ, x) then x and y are (Cϵ,

p
ϵ,R)-matchable for an appropriate constant C , and

similarly for x̃, ỹ ∈ G . On G , the converse also essentially holds, and moreover the best
matching among all two sided matching is essentially given by the matching defined
in §2.1. This turns out to be also true in G/Γ, but this is a much more delicate statement
and only holds if the action of ut on G/Γ is not loosely Kronecker—indeed, this fact is
essentially equivalent to our Main Lemma presented in §4.

Proposition 2.4. There exist constants C1 > 0 and L such that for any ϵ,δ > 0 small
enough the following holds. Suppose x̃ ∈ G, dG (g ,e) < δ and ỹ = g .x̃. Let h : R→ R be
a C∞ function such that h(0) = 0 and

∣∣h′(t )−1
∣∣< ϵ. Then we can cover the set

I x̃,ỹ =
{

t ≥ 0 : dG (exp(h(t )u)x̃,exp(t u)ỹ) < 4δ
}
,

by k ≤ L disjoint closed intervals [bi ,di ], so that on each interval

dG (exp((φ(t )−φ(bi )+h(bi ))u)x̃,exp(t u)ỹ) <C1δ ∀t ∈ [bi ,di ]

with φ(t ) is as in Lemma 2.2. Moreover for all i = 1, . . . ,k and t ∈ [bi ,di ],

exp((φ(t )−φ(bi )+h(bi ))u)x̃ ∈ Kak(di −bi ,C1δ,exp(t u)ỹ).

2.5. Two relations. Let K ⊂G/Γbe a compact set, x, y ∈ K and ϵ small enough so that for
any x ∈ K , the map g 7→ g .x is injective on the ϵ-ball around e ∈G . Suppose that y = g .x
for g ∈ G with dG (g ,e) < ϵ and moreover that dG/Γ(ut .x,us .y) < ϵ for some t , s ≥ 0. Lift
x to a point x̃ in G and set ỹ = g x̃, so that dG (x̃, ỹ) < ϵ. Then there exists a unique γ ∈ Γ
such that dG (exp(t u)x̃,exp(s u)ỹγ) < ϵ. Note that the conjugacy class [γ] of γ does not
depend on the lift x̃ we choose for x. If x, y, s, t , [γ] satisfy the above we shall write

(x, y)
[γ]
⇝ (ut .x,us .y);
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we also write (x, y)
e
⇝ (ut .x,us .y) for (x, y)

[e]
⇝ (ut .x,us .y) and

(x, y)
̸=e
⇝ (ut .x,us .y)

if (x, y)
[γ]
⇝ (ut .x,us .y) for γ ̸= e.

3. Reduction to a good Kakutani equivalence

We begin with two reductions for any general Kakutani equivalence between the
actions of unipotent one-parameter subgroups. The second step of these reductions
also holds for any general abstract ergodic systems.

For i = 1,2, we assume that Gi is the identity component of a real semisimple linear
algebraic group without compact factors, Γi < Gi a lattice and mi a probability mea-
sure on Gi /Γi induced from Haar measure on Gi . Let u(i )

t be a one-parameter unipotent
subgroup acting ergodically on (Gi /Γi ,mi ) for i = 1,2 andψ an arbitrary Kakutani equiv-
alence between (G1/Γ1,u(1)

t ,m1) and (G2/Γ2,u(2)
t ,m2).

The first step of the reduction is using the diagonal subgroup to normalize our one-
parameter unipotent subgroup, which reduces ψ to an even Kakutani equivalence:

Proposition 3.1. There exists s0 ∈ R such that a(2)
s0

◦ψ is an even Kakutani equivalence,

where a(2)
s is the diagonalizable subgroup arising from sl2(R)-triple for the generator of u(2)

t
in §2.3.

The target of the second step of our reduction is to obtain a good control of the time
change function α. In order to simplify the notation, we introduce the following defini-
tion:

Definition 3.2. Let Tt and St be two ergodic flows acting on (X ,B,µ) and (Y ,C ,ν)
respectively. For any ϵ > 0, we say ψ is an ϵ-controllable Kakutani equivalence be-
tween Tt and St if the following holds:

(1) ψ is an even Kakutani equivalence between Tt and St with time change func-
tion α;

(2) esssup |α−1| < ϵ;
(3) there exists a full measure set K ⊂ X such that for every x ∈ K , α(Tt x) is a C∞

function in t .

Lemma 3.3. Let ψ be an even Kakutani equivalence between two ergodic flows. For any
given ϵ > 0, there exists an ϵ-controllable Kakutani equivalence ψ̃ that is cohomologous
to ψ.

This lemma (which is a lemma about general ergodic systems and does not use any
special properties of unipotent flows) follows from a combination of [6, Proposition 2.3]
and [13, Theorem 1.4].

As a result of these two reductions, it is permissible to assume that ψ is an ϵ1-con-
trollable Kakutani equivalence, with ϵ1 > 0 a small fixed constant, an assumption we
make from this point on.

4. Main lemma

One of the key ingredients of the proof of Theorem 1.2 is the following proposition,
which essentially shows that Kakutani–Bowen balls are preserved under Kakutani equiv-
alence map. This type of proposition first appeared in [15] for Cartesian products of
horocycle flows on compact quotients of SL2(R). In order to calculate an invariant for
Kakutani equivalences introduced by Ratner [16] for more general one-parameter unipo-
tent flows, Kanigowski, Vinhage and the second named author extended this analysis to
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general semisimple linear Lie groups in [5], though for our purposes we need a sharper
form of this important result.

Lemma 4.1 (Main Lemma). There exist δ1,R1 > 0 and a compact set K1 ⊂ G1/Γ1 with
m1(K1) > 0.99 such that for any δ ∈ (0,δ1), there exists ϵ ∈ (0,δ) such that if x, y ∈ K1 and
R > R1 satisfy

x ∈ Kak(R,ϵ,u(1)
t0

.y)

for some |t0| < ϵR, then we have

ψ(u(1)
t0

.y) ∈ Kak(R,δ,u(2)
tR

.ψ(x))

for some tR satisfying |tR | ≤ 40ϵ1R.

This main lemma is at the heart of our whole argument as it provides an essential tool
to establish that images of two nearby points in a good set under a Kakutani equivalence
remain close; a key point is that for this purpose closeness needs to be measured in
terms of Kakutani–Bowen balls.

In order to establish the main lemma, we first note that as in §2.4, x ∈ Kak(R,ϵ,u(1)
t0

.y)

implies that x and u(1)
t0

.y are (Cϵ,
p
ϵ,R)-two sides matchable for some appropriate con-

stant C . On a set of large measure, ψ is continuous, so combining the pointwise ergodic
theorem with our assumption that ψ is an ϵ1-controllable Kakutani equivalence (cf. the
end of the previous section) give that if x and y are in a “good” set of large measure
and R large enough thenψ(x) andψ(u(1)

t0
.y) are (δ,2ϵ1,R)-two sides matchable for some

appropriate constant δ.

In view of this, Lemma 4.1 can be reduced to the following lemma, which establishes
the connection between two sided matching in G2/Γ2 and Kakutani–Bowen balls.

Lemma 4.2. There is a compact subset K2 ⊂ G2/Γ2 with m2(K2) ≥ 0.99 and constants
C2,L such that for any ϵ,δ sufficiently small and R sufficiently big the following holds. Let
x ∈G2/Γ2 and y ∈ K2 be (C2δ,ϵ,R)-two sides matchable with matching function h. Then
there exist lifts x̃, ỹ ∈G2 of x, y, γR ∈ Γ2, |sR | ≤ R and R ′ ∈ [ R

L ,R
]

such that for both t = 0
and R ′,

exp((h(sR + t ))u2)x̃ ∈ Kak(R ′,δ)exp((sR + t )u2)ỹγR .

Roughly speaking, the above lemma says that if two points are two sides matchable
for sufficiently long time, then they also stay close in the universal cover for a long time
of the same order of magnitude.

Lemma 4.2 can be derived from the following lemma, where relation
̸=e
⇝ is defined

in §2.5. In order to simplify the notation, we define xt = u(2)
t .x and yt = u(2)

t .y for x, y ∈
G2/Γ2.

Lemma 4.3. There exist C3, w,R2 > 0 and a compact set K3 ⊂ G2/Γ2 with m2(K3) > 0.99
such that for every R ≥ R2 the following holds. Suppose that y ∈ K3, x ∈ Kak(R,δ, y), xh(s) ∈
Kak(R,δ, ys ) and (x, y)

̸=e
⇝ (xh(s), ys ), then we have,

min(s,h(s)) ≥C3R1+w .

Such a result first appeared in Ratner [15] for the Cartesian product of horocycle
flows. By using techniques in algebraic group theory, we generalize it to arbitrary
one-parameter unipotent subgroups. Together with some combinatorial estimates,
Lemma 4.3 shows that for most points, the two sided matching on G2/Γ2 implies the
two sided matching in the same time scale on G2 for their corresponding lifts. This will
give the proof of Lemma 4.2 and hence also Lemma 4.1.
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5. Compatibility of diagonalizable group

For any ϵ,δ, if η is sufficiently small, x ∈G1/Γ1 then x and a(1)
η x are (δ,ϵ,R)-two sides

matchable for any R. Using Lemma 4.1 (the “Main Lemma”) this implies that ψ(a(1)
η x) ∈

NG2 (U (2))ψ(x) with NG2 (U (2)) denoting the normalizer in G2 of U (2), where U (2) is the
one-parameter unipotent subgroup defined in §2.3. This can further be upgraded to the
following statement:

Proposition 5.1. There is an element c in the centralizer of U (2) so that if ψ′(x) = cψ(x)
then a.e.

ψ′(a(1)
1 .x) ∈U (2)a(2)

1 .ψ′(x).

Without loss of generality we may assume ψ′ =ψ, and then Proposition 5.1 says that
there is a measurable function t (x) : X1 →R so that for a.e. x,

ψ(a(1)
1 .x) = u(2)

t (x)a(2)
1 .ψ(x). (5.1)

Iterating, we can get

ψ(a(1)
n .x) = u(2)

e2n−2t (x)+e2n−4t (a(1)
1 .x)+···+t (a(1)

n−1.x)
a(2)

n .ψ(x). (5.2)

Unfortunately, we have no information on t (x) (we certainly do not know it is in L1)
so e2n−2t (x)+e2n−4t (a(1)

1 .x)+·· ·+ t (a(1)
n−1.x) could be very large.

We overcome this significant hurdle by perturbing the points a(1)
j .x into a set where

t (·) is bounded, using a certain L2 ergodic theorem for SL2(R)-actions described in the
next section.

In her paper [19], Ratner used a statement analogous to Proposition 5.1 to show that if
the time change is sufficiently smooth, a Kakutani equivalence between two horocycle
flows has to come from an isomorphism. We follow a similar strategy here, using equa-
tion (5.1) as a crucial ingredient. To do that, we consider on the “conjugation” ofψ under
the diagonalizable groups a(i )

t

ψn(x) = a(2)
−nψ(a(1)

n .x), x ∈G1/Γ1. (5.3)

Combining the even Kakutani equivalence assumption and pointwise ergodic theorem,
the limit of ψn (if it exists) will be a measurable isomorphism between the correspond-
ing unipotent flows and thus the only remaining task is the existence of the limit of ψn .
In [19], the regularity assumption of the time changes is used to establish the existence
of the limit ofψn along a subsequence, thus establishing time change rigidity in this case
were the time change is assumed to have some a priori regularity. A similar strategy has
also been used very recently by Artigiani, Flaminio and Ravotti [1], however they need
to assume convergence of the ψn to get an isomorphism. Due to the lack of regularity
assumption in our situations, significant changes are needed.

6. Spectral gap and an SL2(R)-ergodic theorem

The aim of this section is to state a SL2(R)-pointwise ergodic theorem, which enable
us to find good points in pushforward of small ϵ-balls in H1 under a(1)

n . We remark that
the spectral gap for L2(G1/Γ1) is only used in this section to obtain the necessary point-
wise behaviour.

Our SL2(R)-ergodic theorem is following:

Theorem 6.1. Let ρ be a unitary representation of H = SL2(R) on a Hilbert space Hρ with
no fixed vectors and a spectral gap. Then there exists ϵ2 > 0 such that for any ϵ ∈ (0,ϵ2)



20 Elon Lindenstrauss, Daren Wei

there is a C (ϵ) so that

+∞∑
n=1

∥∥∥∥∥ 1

mH (B H ,∥·∥
ϵ )

∫
B H ,∥·∥
ϵ

ρ(ha−n)v dmH (h)

∥∥∥∥∥
2

<C (ϵ)∥v∥2

for any v ∈Hρ , where mH is the Haar measure on H and B H ,∥·∥
ϵ is the ϵ-ball in H around

identity with respect to the Hilbert–Schmidt norm.

Recall that a unitary representation (ρ,H ) of H is said to have a spectral gap if there
is some compactly supported probability measure ν on H so that on the orthogonal
complement of the H-fixed vectors the norm of the operator

∫
ρ(g )dν(g ) is < 1.

A direct corollary of Theorem 6.1 is:

Corollary 6.2. Let G be the identity component of a real semisimple algebraic group with-
out compact factors, Γ < G a lattice with m the probability measure on G/Γ induced by
Haar measure on G. Let H < G be locally isomorphic to SL2 and let at ∈ H be a one-
parameter diagonalizable subgroup as in §2.3. Given ϵ ∈ (0,ϵ2) and η ∈ [0,1), then for any
f ∈ L2(G/Γ,m), m-a.e. x ∈G/Γ, we have

lim
n→+∞

1

mH (B H ,∥·∥
ϵ )

∫
B H ,∥·∥
ϵ

f (an(1−η)hanη.x)dmH (h) =
∫

G/Γ
f dm.

The deduction of Corollary 6.2 from Theorem 6.1 uses the fact that if G is a semisim-
ple group without compact factors, Γ an irreducible lattice, and H <G is as above, then
the representation of H on L2(G/Γ) arising from left translations has a spectral gap. More
generally, if G = ∏

i Gi and Γ = ∏
i Γi with Γi < Gi irreducible lattices, and if H projects

non-trivially into each Gi , then the action of H on L2(G/Γ) has a spectral gap. See, for
example, [8, 7] for more information and background.

7. Existence of limiting map

Finally we show thatψn(x) converges in an appropriate sense to a limiting mapϕ(x).
This limiting map will turn out to be not just an (even) Kakutani equivalence but in fact
a measurable isomorphism between the two unipotent flows given by the u(i )

t action
on Gi /Γi .

Theorem 7.1. For m1-a.e. x ∈G1/Γ1, there is a subsequence
{
ni

}
i∈N of natural numbers

with full density such that ϕ(x) = limi→∞ψni (x) exists and

(B1) ϕ : G1/Γ1 →G2/Γ2 is a measurable map;
(B2) ϕ(x) ∈U (2)(ψ(x));
(B3) ϕ(u(1)

t .x) = u(2)
t .ϕ(x) for m1-a.e. x ∈G1/Γ1 and any t ∈R;

(B4) ϕ(a(1)
k .x) = a(2)

k .ϕ(x) for m1-a.e. x ∈G1/Γ1 and any k ∈N.

The challenging part is establishing that there is a subsequence
{
ni

}
i∈N of natural

numbers with full density such that

ϕ(x) = lim
i→∞

ψni (x)

exists; the rest follows by standard arguments.
The key observation to prove Theorem 7.1 is to consider the iterations

{
a(1)

n hn .x
}

n∈N
for some hn ∈ B H1,∥·∥

ϵ instead of
{

a(1)
n .x

}
n∈N. By using Corollary 6.2, we can always guar-

antee that a(1)
n hn .x stays in some good sets, i.e.,

∣∣t (a(1)
n hn .x)

∣∣ is bounded by a positive

constant, for every n. Note that this was not possible for a(1)
n x due to the existence

of bad iterations as guaranteed by pointwise ergodic theorem. In order to control the
error terms in opposite horocycle directions, i.e., exp(Ru−

2 ), we also need to consider
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iterations
{

a(1)
n(1−η)hn a(1)

nη.x
}

n∈N. With the help of estimates in representation theory and

Lemma 4.1, we are able to combine two iterations and obtain controls for all directions.

Once we obtain Theorem 7.1, the proof of Theorem 1.2 follows from the combina-
tion of isomorphism rigidity theorem for unipotent flows and Ratner’s argument in [19].
More precisely, (B1), (B3) together with the isomorphism rigidity theorem for unipotent
flows give that G1 and G2 are isomorphic and that Γ1 and Γ2 are conjugate up to group
isomorphism. Combining (B2), (B4), and Ratner’s argument in [19, Proof of Theorem 1],
we obtain that ψ indeed is cohomologous to a group isomorphism. This completes the
proof.
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