A Dehn surgery on the periodic fiber flow of the unit tangent bundle of a surface produces a uniformly hyperbolic Cantor set for the resulting contact flow.
@article{MRR_2023__4__1_0, author = {Boris Hasselblatt and Curtis Heberle}, title = {Hyperbolicity from contact surgery}, journal = {Mathematics Research Reports}, pages = {1--10}, publisher = {MathOA foundation}, volume = {4}, year = {2023}, doi = {10.5802/mrr.14}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.14/} }
Boris Hasselblatt; Curtis Heberle. Hyperbolicity from contact surgery. Mathematics Research Reports, Volume 4 (2023), pp. 1-10. doi : 10.5802/mrr.14. https://mrr.centre-mersenne.org/articles/10.5802/mrr.14/
[1] Ergodicity of linked twist maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Lecture Notes in Math.), Volume 819, Springer, Berlin (1980), pp. 35-49 | DOI | MR | Zbl
[2] On the existence of supporting broken book decompositions for contact forms in dimension 3, 2020 | arXiv
[3] Subshifts of finite type in linked twist mappings, Proc. Amer. Math. Soc., Volume 71 (1978) no. 2, pp. 334-338 | DOI | MR | Zbl
[4] Linked twist mappings are almost Anosov, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Lecture Notes in Math.), Volume 819, Springer, Berlin (1980), pp. 121-145 | DOI | MR | Zbl
[5] Hyperbolic flows, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2019 | DOI
[6] Contact Anosov flows on hyperbolic 3-manifolds, Geom. Topol., Volume 17 (2013) no. 2, pp. 1225-1252 | DOI | MR | Zbl
[7] Orbit growth of contact structures after surgery, Ann. H. Lebesgue, Volume 4 (2021), pp. 1103-1141 | DOI | Numdam | MR | Zbl
[8] A Bernoulli toral linked twist map without positive Lyapunov exponents, Proc. Amer. Math. Soc., Volume 124 (1996) no. 4, pp. 1253-1263 | DOI | MR | Zbl
[9] Stochastic stability of Bernoulli toral linked twist maps of finite and infinite entropy, Ergodic Theory Dynam. Systems, Volume 16 (1996) no. 3, pp. 493-518 | DOI | MR | Zbl
[10] Ergodicity of toral linked twist mappings, Ann. Sci. École Norm. Sup. (4), Volume 16 (1983) no. 3, p. 345-354 (1984) | DOI | Numdam | MR | Zbl
[11] Polynomial decay of correlations in linked-twist maps, Ergodic Theory Dynam. Systems, Volume 34 (2014) no. 5, pp. 1724-1746 | DOI | MR | Zbl
[12] Ergodic properties of linked-twist maps, 2008 | arXiv
[13] Bernoulli linked-twist maps in the plane, Dyn. Syst., Volume 25 (2010) no. 4, pp. 483-499 | DOI | MR | Zbl
[14] The mathematical foundations of mixing, Cambridge Monographs on Applied and Computational Mathematics, 22, Cambridge University Press, Cambridge, 2006, xx+281 pages (The linked twist map as a paradigm in applications: micro to macro, fluids to solids) | DOI | MR
[15] Linked twist mappings have the -property, Nonlinear dynamics (Internat. Conf., New York, 1979) (Ann. New York Acad. Sci.), Volume 357, New York Acad. Sci., New York, 1980, pp. 65-76 | MR | Zbl
Cited by Sources: