Whiskered KAM tori of conformally symplectic systems
Mathematics Research Reports, Volume 1 (2020), pp. 15-29.

We investigate the existence of whiskered tori in some dissipative systems, called conformally symplectic systems, having the property that they transform the symplectic form into a multiple of itself. We consider a family f μ of conformally symplectic maps which depends on a drift parameter μ.

We fix a Diophantine frequency of the torus and we assume to have a drift μ 0 and an embedding of the torus K 0 , which satisfy approximately the invariance equation f μ 0 K 0 =K 0 T ω (where T ω denotes the shift by ω). We also assume to have a splitting of the tangent space at the range of K 0 into three bundles. We assume that the bundles are approximately invariant under Df μ 0 and the derivative satisfies some rate conditions.

Under suitable nondegeneracy conditions, we prove that there exist μ , K invariant under f μ , close to the original ones, and a splitting which is invariant under Df μ . The proof provides an efficient algorithm to construct whiskered tori. Full details of the statements and proofs are given in [10].

Received:
Accepted:
Published online:
DOI: 10.5802/mrr.4
Classification: 70K43, 70K20, 34D30
Keywords: Whiskered tori, Conformally symplectic systems, KAM theory.
Renato C. Calleja 1; Alessandra Celletti 2; Rafael de la Llave 3

1 Department of Mathematics and Mechanics, IIMAS National Autonomous University of Mexico (UNAM), Apdo. Postal 20-126 C.P. 01000, Mexico D.F. (Mexico)
2 Department of Mathematics, University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome (Italy)
3 School of Mathematics, Georgia Institute of Technology 686 Cherry St. Atlanta GA. 30332-1160 (USA)
@article{MRR_2020__1__15_0,
     author = {Renato C.  Calleja and Alessandra Celletti and Rafael de la Llave},
     title = {Whiskered {KAM} tori of conformally symplectic systems},
     journal = {Mathematics Research Reports},
     pages = {15--29},
     publisher = {MathOA foundation},
     volume = {1},
     year = {2020},
     doi = {10.5802/mrr.4},
     language = {en},
     url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.4/}
}
TY  - JOUR
AU  - Renato C.  Calleja
AU  - Alessandra Celletti
AU  - Rafael de la Llave
TI  - Whiskered KAM tori of conformally symplectic systems
JO  - Mathematics Research Reports
PY  - 2020
SP  - 15
EP  - 29
VL  - 1
PB  - MathOA foundation
UR  - https://mrr.centre-mersenne.org/articles/10.5802/mrr.4/
DO  - 10.5802/mrr.4
LA  - en
ID  - MRR_2020__1__15_0
ER  - 
%0 Journal Article
%A Renato C.  Calleja
%A Alessandra Celletti
%A Rafael de la Llave
%T Whiskered KAM tori of conformally symplectic systems
%J Mathematics Research Reports
%D 2020
%P 15-29
%V 1
%I MathOA foundation
%U https://mrr.centre-mersenne.org/articles/10.5802/mrr.4/
%R 10.5802/mrr.4
%G en
%F MRR_2020__1__15_0
Renato C.  Calleja; Alessandra Celletti; Rafael de la Llave. Whiskered KAM tori of conformally symplectic systems. Mathematics Research Reports, Volume 1 (2020), pp. 15-29. doi : 10.5802/mrr.4. https://mrr.centre-mersenne.org/articles/10.5802/mrr.4/

[1] V. I. Arnolʼd Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Russian Math. Surveys, Volume 18 (1963) no. 5, pp. 9-36 | DOI | MR

[2] V. I. Arnolʼd Instability of dynamical systems with many degrees of freedom, Sov. Math. Doklady, Volume 156 (1964), pp. 581-585 | MR

[3] Augustin Banyaga Some properties of locally conformal symplectic structures, Comment. Math. Helv., Volume 77 (2002) no. 2, pp. 383-398 | DOI | MR | Zbl

[4] H. W. Broer; G. B. Huitema; F. Takens; B. L. J. Braaksma Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., Volume 83 (1990) no. 421, p. viii+175 | DOI | MR | Zbl

[5] Hendrik W. Broer; George B. Huitema; Mikhail B. Sevryuk Quasi-periodic motions in families of dynamical systems. Order amidst chaos, Lecture Notes in Mathematics, 1645, Springer-Verlag, Berlin, 1996, xii+196 pages | MR | Zbl

[6] Adrián P. Bustamante; Renato C. Calleja Computation of domains of analyticity for the dissipative standard map in the limit of small dissipation, Phys. D, Volume 395 (2019), pp. 15-23 | DOI | MR

[7] Renato C. Calleja; Alessandra Celletti; Livia Corsi; Rafael de la Llave Response solutions for quasi-periodically forced, dissipative wave equations, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3161-3207 | DOI | MR | Zbl

[8] Renato C. Calleja; Alessandra Celletti; Rafael de la Llave A KAM theory for conformally symplectic systems: efficient algorithms and their validation, J. Differential Equations, Volume 255 (2013) no. 5, pp. 978-1049 | DOI | MR | Zbl

[9] Renato C. Calleja; Alessandra Celletti; Rafael de la Llave Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems, Nonlinearity, Volume 30 (2017) no. 8, pp. 3151-3202 | DOI | MR | Zbl

[10] Renato C. Calleja; Alessandra Celletti; Rafael de la Llave Existence of whiskered KAM tori of conformally symplectic systems, Nonlinearity, Volume 33 (2020) no. 1, pp. 538-597 | DOI | MR | Zbl

[11] Marta Canadell; Àlex Haro Computation of quasiperiodic normally hyperbolic invariant tori: rigorous results, J. Nonlinear Sci., Volume 27 (2017) no. 6, pp. 1869-1904 | DOI | MR | Zbl

[12] Alessandra Celletti Stability and chaos in celestial mechanics, Springer-Verlag, Berlin; published in association with Praxis Publishing, Chichester, 2010, xvi+261 pages | DOI | MR | Zbl

[13] W. A. Coppel Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978, ii+98 pages | DOI | MR | Zbl

[14] Andrea Davini; Albert Fathi; Renato Iturriaga; Maxime Zavidovique Convergence of the solutions of the discounted equation: the discrete case, Math. Z., Volume 284 (2016) no. 3-4, pp. 1021-1034 | DOI | MR | Zbl

[15] Andrea Davini; Albert Fathi; Renato Iturriaga; Maxime Zavidovique Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions, Invent. Math., Volume 206 (2016) no. 1, pp. 29-55 | DOI | MR | Zbl

[16] C. P. Dettmann; G.P. Morriss Proof of Lyapunov exponent pairing for systems at constant kinetic energy, Phys. Rev. E, Volume 53 (1996) no. 6, p. R5545-R5548 | DOI

[17] Ernest Fontich; Rafael de la Llave; Yannick Sire Construction of invariant whiskered tori by a parameterization method. Part I. Maps and flows in finite dimensions, J. Differential Equations, Volume 246 (2009) no. 8, pp. 3136-3213 | DOI | MR | Zbl

[18] Ernest Fontich; Rafael de la Llave; Yannick Sire Construction of invariant whiskered tori by a parameterization method. Part II: Quasi-periodic and almost periodic breathers in coupled map lattices, J. Differential Equations, Volume 259 (2015) no. 6, pp. 2180-2279 | DOI | MR | Zbl

[19] M. W. Hirsch; C. C. Pugh; M. Shub Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977, ii+149 pages | MR | Zbl

[20] R. de la Llave; A. González; À. Jorba; J. Villanueva KAM theory without action-angle variables, Nonlinearity, Volume 18 (2005) no. 2, pp. 855-895 | DOI | MR | Zbl

[21] Rafael de la Llave A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175-292 | DOI | MR | Zbl

[22] Rafael de la Llave; Yannick Sire An a posteriori KAM theorem for whiskered tori in Hamiltonian partial differential equations with applications to some ill-posed equations, Arch. Ration. Mech. Anal., Volume 231 (2019) no. 2, pp. 971-1044 | DOI | MR | Zbl

[23] Ugo Locatelli; Letizia Stefanelli Quasi-periodic motions in a special class of dynamical equations with dissipative effects: a pair of detection methods, Discrete Contin. Dyn. Syst. Ser. B, Volume 20 (2015) no. 4, pp. 1155-1187 | DOI | MR | Zbl

[24] Jürgen Moser Convergent series expansions for quasi-periodic motions, Math. Ann., Volume 169 (1967), pp. 136-176 | DOI | MR | Zbl

[25] Robert J. Sacker; George R. Sell Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations, Volume 15 (1974), pp. 429-458 | DOI | MR | Zbl

[26] Letizia Stefanelli; Ugo Locatelli Kolmogorov’s normal form for equations of motion with dissipative effects, Discrete Contin. Dyn. Syst. Ser. B, Volume 17 (2012) no. 7, pp. 2561-2593 | DOI | MR | Zbl

[27] Xifeng Su; Philippe Thieullen Convergence of discrete Aubry-Mather model in the continuous limit, Nonlinearity, Volume 31 (2018) no. 5, pp. 2126-2155 | DOI | MR | Zbl

[28] Maciej P. Wojtkowski; Carlangelo Liverani Conformally symplectic dynamics and symmetry of the Lyapunov spectrum, Comm. Math. Phys., Volume 194 (1998) no. 1, pp. 47-60 | DOI | MR | Zbl

Cited by Sources: