Approximate rigidity of the marked length spectrum
Mathematics Research Reports, Volume 4 (2023), pp. 63-82.

We report on recent work investigating the extent to which finitely many closed geodesics approximately determine a negatively curved metric on a closed manifold. It is known in certain cases—and conjectured to be true in general—that the lengths of all closed geodesics (as a function of their free homotopy classes) determine the underlying negatively curved metric up to isometry. This length function is known as the marked length spectrum. Here, we consider certain pairs of Riemannian manifolds whose marked length spectra agree—only approximately—on a finite set of closed geodesics. We report on our recent results which show the two metrics are “almost isometric". More precisely, we show the metrics are bi-Lipschitz equivalent with constant close to 1, and we obtain estimates for these constants depending only on concrete Riemannian data.

Received:
Revised:
Published online:
DOI: 10.5802/mrr.18
Classification: 37D40, 37D20, 37C27, 53C24, 53C22
Keywords: marked length spectrum, closed geodesics, geodesic flow, negative curvature, locally symmetric spaces, rigidity
Karen Butt 1

1 Department of Mathematics, University of Chicago, 5734 S University Ave, Chicago, IL 60637
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{MRR_2023__4__63_0,
     author = {Karen Butt},
     title = {Approximate rigidity of the marked length spectrum},
     journal = {Mathematics Research Reports},
     pages = {63--82},
     publisher = {MathOA foundation},
     volume = {4},
     year = {2023},
     doi = {10.5802/mrr.18},
     language = {en},
     url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.18/}
}
TY  - JOUR
AU  - Karen Butt
TI  - Approximate rigidity of the marked length spectrum
JO  - Mathematics Research Reports
PY  - 2023
SP  - 63
EP  - 82
VL  - 4
PB  - MathOA foundation
UR  - https://mrr.centre-mersenne.org/articles/10.5802/mrr.18/
DO  - 10.5802/mrr.18
LA  - en
ID  - MRR_2023__4__63_0
ER  - 
%0 Journal Article
%A Karen Butt
%T Approximate rigidity of the marked length spectrum
%J Mathematics Research Reports
%D 2023
%P 63-82
%V 4
%I MathOA foundation
%U https://mrr.centre-mersenne.org/articles/10.5802/mrr.18/
%R 10.5802/mrr.18
%G en
%F MRR_2023__4__63_0
Karen Butt. Approximate rigidity of the marked length spectrum. Mathematics Research Reports, Volume 4 (2023), pp. 63-82. doi : 10.5802/mrr.18. https://mrr.centre-mersenne.org/articles/10.5802/mrr.18/

[1] C. S. Aravinda; F. T. Farrell Exotic negatively curved structures on Cayley hyperbolic manifolds, J. Differ. Geom., Volume 63 (2003) no. 1, pp. 41-62 | DOI | MR | Zbl

[2] C. S. Aravinda; F. T. Farrell Exotic structures and quaternionic hyperbolic manifolds, Algebraic groups and arithmetic (Tata Institute of Fundamental Research Studies in Mathematics), Volume 17, Tata Institute of Fundamental Research, 2004, pp. 507-524 | Zbl

[3] Werner Ballmann Lectures on spaces of nonpositive curvature, 25, Springer, 1995 | DOI | Numdam

[4] Riccardo Benedetti; Carlo Petronio Lectures on hyperbolic geometry, Springer, 1992 | DOI

[5] Laurent Bessières; Gérard Besson; Gilles Courtois; Sylvestre Gallot Differentiable rigidity under Ricci curvature lower bound, Duke Math. J., Volume 161 (2012) no. 1, pp. 29-67 | MR | Zbl

[6] Gérard Besson; Gilles Courtois; Sylvestre Gallot Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., Volume 5 (1995) no. 5, pp. 731-799 | DOI

[7] Gérard Besson; Gilles Courtois; Sylvestre Gallot Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 4, pp. 623-649 | DOI | MR | Zbl

[8] Marc Bourdon Sur le birapport au bord des CAT(-1)-espaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 95-104 | DOI | Zbl

[9] Rufus Bowen Topological entropy and axiom A, Global Analysis (Proceedings of Symposia in Pure Mathematics), Volume 14, American Mathematical Society, 1970, pp. 23-41 | DOI | Zbl

[10] Martin R. Bridson; André Haefliger Metric spaces of non-positive curvature, 319, Springer, 2013

[11] Marc Burger; Shahar Mozes CAT (-1)-spaces, divergence groups and their commensurators, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 57-93 | DOI | MR | Zbl

[12] Keith Burns Hyperbolic behaviour of geodesic flows on manifolds with no focal points, Ph. D. Thesis, University of Wawrick (1983)

[13] Keith Burns; Anatole Katok; W. Ballman; Michael I. Brin; P. Eberlein; R. Osserman Manifolds with non-positive curvature, Ergodic Theory Dyn. Syst., Volume 5 (1985) no. 2, pp. 307-317 | DOI | Zbl

[14] Karen Butt Approximate control of the marked length spectrum by short geodesics (2022) | arXiv

[15] Karen Butt Quantitative marked length spectrum rigidity (2022) (to appear in Geometry & Topology)

[16] Karen Butt Closed geodesics and stability of negatively curved metrics, Ph. D. Thesis, University of Michigan (2023)

[17] Stephen Cantrell; Eduardo Reyes Marked length spectrum rigidity from rigidity on subsets (2023) | arXiv

[18] Christopher B. Croke Rigidity for surfaces of non-positive curvature, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 150-169 | DOI | Zbl

[19] Christopher B. Croke; Nurlan S. Dairbekov Lengths and volumes in Riemannian manifolds, Duke Math. J., Volume 125 (2004) no. 1, pp. 1-14 | MR | Zbl

[20] Christopher B. Croke; Albert Fathi; Joel Feldman The marked length-spectrum of a surface of nonpositive curvature, Topology, Volume 31 (1992) no. 4, pp. 847-855 | DOI | MR | Zbl

[21] Adrien Douady; Clifford J Earle Conformally natural extension of homeomorphisms of the circle, Acta Math., Volume 157 (1986), pp. 23-48 | DOI | MR | Zbl

[22] J. J. Duistermaat; V. W. Guillemin The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics, Invent. Math., Volume 29 (1975), pp. 39-79 | DOI | MR | Zbl

[23] Benson Farb; Dan Margalit A primer on mapping class groups, Princeton University Press, 2011 | DOI

[24] F. Thomas Farrell; Lowell E. Jones Negatively curved manifolds with exotic smooth structures, J. Am. Math. Soc., Volume 2 (1989) no. 4, pp. 899-908 | DOI | MR | Zbl

[25] F. Thomas Farrell; Lowell E. Jones A topological analogue of Mostow’s rigidity theorem, J. Am. Math. Soc., Volume 2 (1989) no. 2, pp. 257-370 | MR | Zbl

[26] F. Thomas Farrell; Lowell E. Jones Complex hyperbolic manifolds and exotic smooth structures, Invent. Math., Volume 117 (1994) no. 1, pp. 57-74 | DOI | MR | Zbl

[27] F. Thomas Farrell; Pedro Ontaneda On the topology of the space of negatively curved metrics, J. Differ. Geom., Volume 86 (2010) no. 2, pp. 273-302 | MR | Zbl

[28] Renato Feres The minimal entropy theorem and Mostow rigidity: after G. Besson, G. Courtois and S. Gallot (1996) (unpublished)

[29] Todd Fisher; Boris Hasselblatt Hyperbolic flows, European Mathematical Society, 2019 | DOI

[30] Robert Fricke; Felix Klein Vorlesungen über die Theorie der elliptischen Modulfunctionen, BG Teubner, 1890

[31] Harry Furstenberg A Poisson formula for semi-simple Lie groups, Ann. Math. (1963), pp. 335-386 | DOI | MR | Zbl

[32] Andrey Gogolev; Federico Rodriguez Hertz Smooth rigidity for 3-dimensional volume preserving Anosov flows and weighted marked length spectrum rigidity (2022) | arXiv

[33] Carolyn Gordon Survey of isospectral manifolds, Handbook of Differential Geometry, North-Holland, 1999, pp. 747-778 | Zbl

[34] Sébastien Gouëzel; Thibault Lefeuvre Classical and microlocal analysis of the X-ray transform on Anosov manifolds, Anal. PDE, Volume 14 (2021) no. 1, pp. 301-322 | DOI | MR | Zbl

[35] Mikhaıl Gromov Three remarks on geodesic dynamics and fundamental group, Enseign. Math., Volume 46 (2000) no. 3-4, pp. 391-402 | MR | Zbl

[36] Colin Guillarmou; Gerhard Knieper; Thibault Lefeuvre Geodesic stretch, pressure metric and marked length spectrum rigidity, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 3, pp. 974-1022 | DOI | MR | Zbl

[37] Colin Guillarmou; Thibault Lefeuvre The marked length spectrum of Anosov manifolds, Ann. Math., Volume 190 (2019) no. 1, pp. 321-344 | MR | Zbl

[38] Colin Guillarmou; Thibault Lefeuvre; Gabriel P. Paternain Marked length spectrum rigidity for Anosov surfaces (2023) | arXiv

[39] Victor Guillemin; David Kazhdan Some inverse spectral results for negatively curved 2-manifolds, Topology, Volume 19 (1980) no. 3, pp. 301-312 | DOI | MR | Zbl

[40] Ursula Hamenstädt Time-preserving conjugacies of geodesic flows, Ergodic Theory Dyn. Syst., Volume 12 (1992) no. 1, pp. 67-74 | DOI | MR | Zbl

[41] Ursula Hamenstädt Regularity of time-preserving conjugacies for contact Anosov flows with C1-Anosov splitting, Ergodic Theory Dyn. Syst., Volume 13 (1993) no. 1, pp. 65-72 | DOI | MR | Zbl

[42] Ursula Hamenstädt Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., Volume 17 (1997) no. 5, pp. 1061-1081 | DOI | MR | Zbl

[43] Ursula Hamenstädt Cocycles, symplectic structures and intersection, Geom. Funct. Anal., Volume 9 (1999) no. 1, pp. 90-140 | DOI | MR | Zbl

[44] Boris Hasselblatt Horospheric foliations and relative pinching, J. Differ. Geom., Volume 39 (1994) no. 1, pp. 57-63 | MR | Zbl

[45] Sa’ar Hersonsky; Frédéric Paulin On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv., Volume 72 (1997) no. 3, pp. 349-388 | DOI | MR | Zbl

[46] Morris W. Hirsch; Charles C. Pugh Smoothness of horocycle foliations, J. Differ. Geom., Volume 10 (1975) no. 2, pp. 225-238 | MR | Zbl

[47] Heinz Huber Zur analytischen theorie hyperbolischer raumformen und bewegungsgruppen, Math. Ann., Volume 138 (1959) no. 1, pp. 1-26 | DOI | Zbl

[48] Mark Kac Can one hear the shape of a drum?, Am. Math. Mon., Volume 73 (1966) no. 4P2, pp. 1-23 | MR | Zbl

[49] Anatole Katok Entropy and closed geodesics, Ergodic Theory Dyn. Syst., Volume 2 (1982) no. 3-4, pp. 339-365 | DOI | MR | Zbl

[50] Anatole Katok; Boris Hasselblatt Introduction to the modern theory of dynamical systems, Cambridge University Press, 1997 no. 54

[51] Svetlana Katok Approximate solutions of cohomological equations associated with some Anosov flows, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 2, pp. 367-379 | DOI | MR | Zbl

[52] Gerhard Knieper Hyperbolic dynamics and Riemannian geometry, Handbook of dynamical systems, Volume 1, Elsevier, 2002, pp. 453-545 | Zbl

[53] A. N. Livšic Cohomology of dynamical systems, Math. USSR, Izv., Volume 6 (1972) no. 6, p. 1278 | DOI

[54] Anthony Manning Topological entropy for geodesic flows, Ann. Math., Volume 110 (1979) no. 3, pp. 567-573 | DOI | MR | Zbl

[55] Grigoriy A. Margulis Applications of ergodic theory to the investigation of manifolds of negative curvature, Funkts. Anal. Prilozh., Volume 3 (1969) no. 4, pp. 89-90 | MR

[56] Grigoriy A. Margulis On some aspects of the theory of Anosov systems, Springer, 2004 | DOI | MR

[57] Henry P. McKean Selberg’s trace formula as applied to a compact Riemann surface, Commun. Pure Appl. Math., Volume 25 (1972) no. 3, pp. 225-246 | DOI | MR

[58] John Milnor Eigenvalues of the Laplace operator on certain manifolds, Proc. Natl. Acad. Sci. USA, Volume 51 (1964) no. 4, p. 542-542 | DOI | MR | Zbl

[59] G. Daniel Mostow Strong Rigidity of Locally Symmetric Spaces, University of Tokyo Press, 1973 no. 78

[60] Jean-Pierre Otal Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math., Volume 131 (1990) no. 1, pp. 151-162 | DOI | Zbl

[61] Jean-Pierre Otal Sur la géométrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoam., Volume 8 (1992) no. 3, pp. 441-456 | DOI | MR | Zbl

[62] Yuping Ruan The Cayley hyperbolic space and volume entropy rigidity (2022) | arXiv

[63] Noelle Sawyer Partial marked length spectrum rigidity for negatively curved surfaces, Ph. D. Thesis, Wesleyan University (2020)

[64] Paul Schmutz Die parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helv., Volume 68 (1993) no. 1, pp. 278-288 | DOI | MR | Zbl

[65] Karl Sigmund On the space of invariant measures for hyperbolic flows, Am. J. Math., Volume 94 (1972) no. 1, pp. 31-37 | DOI | MR | Zbl

[66] Antoine Song Entropy and stability of hyperbolic metrics (2023) | arXiv

[67] Toshikazu Sunada Riemannian coverings and isospectral manifolds, Ann. Math., Volume 121 (1985) no. 1, pp. 169-186 | DOI | MR | Zbl

[68] William P. Thurston Minimal stretch maps between hyperbolic surfaces (1998) | arXiv

[69] Yves Colin de Verdière Spectre du laplacien et longueurs de géodesiques périodiques I, Compos. Math., Volume 27 (1973) no. 1, pp. 83-106 | Zbl

[70] Yves Colin de Verdière Spectre du laplacien et longueurs de géodesiques périodiques II, Compos. Math., Volume 27 (1973) no. 2, pp. 159-184 | Zbl

[71] Marie-France Vignéras Variétés riemanniennes isospectrales et non isométriques, Ann. Math., Volume 112 (1980) no. 1, pp. 21-32 | DOI | Zbl

[72] Amie Wilkinson Lectures on marked length spectrum rigidity (preliminary version) (2012) (http://www.math.utah.edu/pcmi12/lecture_notes/wilkinson.pdf)

[73] Steve Zelditch The inverse spectral problem, Surveys in differential geometry. Eigenvalues of Laplacians and other geometric operators (Surveys in Differential Geometry), Volume 9, International Press, 2004, pp. 401-467 | DOI | MR | Zbl

Cited by Sources: