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Approximate rigidity of the marked length spectrum
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(Recommended by Boris Hasselblatt)

Abstract. We report on recent work investigating the extent to which
finitely many closed geodesics approximately determine a negatively
curved metric on a closed manifold. It is known in certain cases—
and conjectured to be true in general—that the lengths of all closed
geodesics (as a function of their free homotopy classes) determine the
underlying negatively curved metric up to isometry. This length func-
tion is known as the marked length spectrum. Here, we consider certain
pairs of Riemannian manifolds whose marked length spectra agree—
only approximately—on a finite set of closed geodesics. We report on
our recent results which show the two metrics are “almost isometric".
More precisely, we show the metrics are bi-Lipschitz equivalent with
constant close to 1, and we obtain estimates for these constants de-
pending only on concrete Riemannian data.

1. Introduction

1.1. Overview. We report on recent work proving quantitative versions of known
marked length spectrum rigidity results. Throughout this article, we consider the setting
where (M , g ) is a closed Riemannian manifold of negative sectional curvature. In broad
terms, our work is about closed geodesics of (M , g ) (or, equivalently, periodic orbits of
the geodesic flow) and the extent to which they determine the underlying metric g . In
our setting, it is known in certain cases—and conjectured to be true in general—that in
order to determine the isometry type of the metric g , it suffices to measure the lengths
of all closed geodesics (as a function of their free homotopy classes). This phenomenon
is known as marked length spectrum rigidity.

Here, we consider certain pairs of Riemannian manifolds whose marked length spec-
tra agree—only approximately—on a finite set of closed geodesics. Our results show
the two metrics are bi-Lipschitz equivalent with constant close to 1. More precisely, we
obtain explicit estimates for this constant in terms of the measurement error and the
length of the longest geodesic in the finite set. Our estimates depend only on concrete
geometric information about the given metrics, such as the dimension, sectional curva-
ture bounds, and injectivity radii.

1.2. The marked length spectrum. Closed geodesics are objects of fundamental
interest—akin to prime numbers in many ways. They have been thoroughly investi-
gated from multiple viewpoints—differential-geometric, dynamical, symplectic, num-
ber-theoretic, and spectral—which has in turn elucidated further connections between
various areas of mathematics. For instance, Huber proved an asymptotic formula for
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the closed geodesic counting function for closed surfaces of constant negative curva-
ture using ideas from analytic number theory, namely, the Selberg trace formula [47]. In
addition, he showed that the lengths of closed geodesics and the spectrum of the Lapla-
cian completely determine one another in this setting, spurring developments in both
geometry and spectral theory.

In the more general setting of variable curvature, algebraic and number-theoretic
tools are not as readily available, whereas dynamical and analytic approaches to study-
ing closed geodesics have proved to be effective. In his seminal thesis, Margulis gener-
alized Huber’s counting formula to variable negative curvature (and higher dimensions)
in terms of the topological entropy of the geodesic flow, a central notion in dynamics
measuring the complexity of a system’s orbit structure. (See [55] and [56, Chapter 6];
this was also independently proved by Bowen [9].) The relationship between lengths
of closed geodesics and the spectrum of the Laplacian generalizes partially as well. For
generic metrics, the latter determines the former, as shown by the trace formulae in the
works of Colin de Verdière [69, 70] and Duistermaat–Guillemin [22].

A fundamental question in Riemannian geometry is determining a set of parame-
ters which describe a metric up to isometry. In negative curvature, a natural candidate
is the set of lengths of closed geodesics, also known as the length spectrum due to its
close connection with the Laplace spectrum. In fact, to what extent the Laplace spec-
trum determines the metric is a question which falls into a broad class of inverse spectral
problems, famously known by the tagline “Can one hear the shape of a drum?" [48]. It
turns out that one cannot hear the shape of a negatively curved drum: the first examples
of isospectral non-isometric hyperbolic surfaces were constructed by Vignéras [71], and
Sunada later provided a method to generate more general counterexamples [67]. (There
are also a multitude of counterexamples to this question outside of the negatively curved
setting, such as [58]. See the survey [33] for more on this topic.)

Since the Laplace spectrum, and hence the length spectrum, turns out to not always
describe a Riemannian manifold up to isometry, one is led to consider a few natural
follow-up questions. One of these is to ask which geometric properties can in fact be
recovered from spectral data; this is one of the main themes in the rich and vast field
of spectral geometry, which is discussed, for instance, in the survey [73]. Another fruit-
ful avenue, which leads to the subject of the present article, is to ask if there is some
more refined spectral information which actually does determine a negatively curved
metric up to isometry. From this perspective, it is natural to consider lengths of closed
geodesics together with the additional information of their associated free homotopy
classes, which leads to the following definition.

Definition 1.1. Given a closed, negatively curved Riemannian manifold (M , g ), the
marked length spectrum Lg is the function on free homotopy classes of closed curves
in M which associates to each class the length of its unique geodesic representative.

Remark 1.2. Whenever (M , g ) is a closed Riemannian manifold, every free homotopy
class has a shortest-length representative, which is a closed geodesic. In other words, the
existence of the geodesic representative follows simply from the compactness of M . The
negative curvature assumption is used to guarantee uniqueness. See, for instance, [16,
p. 8-9].

1.3. Marked length spectrum rigidity. While the length spectrum alone is not suffi-
cient to determine a negatively curved metric up to isometry, the additional information
provided by the marking, that is, which lengths correspond to which curves, is conjec-
tured to suffice.
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Conjecture 1.1 ([13, Conjecture 3.1]). Let (M , g ) and (M , g0) be closed negatively curved
Riemannian manifolds with Lg =Lg0 . Then g and g0 are isometric by an isometry which
preserves the marking, i.e., which is homotopic to the identity map on M.

Remark 1.3. While it is customary to compare Lg and Lg0 for metrics g and g0 on the
same manifold M , this also makes sense more generally for manifolds (M , g ) and (N , g0)
with isomorphic fundamental groups. Indeed, the set of free homotopy classes of M can
be identified with conjugacy classes in the fundamental group Γ of M , and as such we
can view Lg as a function on Γ.

Conjecture 1.1 (marked length spectrum rigidity) is still open in general, but sub-
stantial progress has been made. We begin by discussing this conjecture in the special
case of hyperbolic surfaces, that is, M and N have dimension 2, and g and g0 are both
metrics of constant negative curvature (hyperbolic metrics). Here, marked length spec-
trum rigidity is a classical result due to Fricke–Klein [30] (see also [57]). In fact, a much
stronger statement holds in this setting: it suffices to check the equality Lg = Lg0 on a
certain finite set of free homotopy classes in order to guarantee g and g0 are isometric
(see [23, Theorem 10.7] and [64]). This finiteness is closely related to the fact that the
Teichmüller space of all possible hyperbolic metrics on a given topological surface has
finite dimension (equal to 6genus(M)−6).

One way to see that Teichmüller space is (6genus(M)− 6)-dimensional is by using
Fenchel–Nielsen coordinates (see, for instance, [23, Chapter 10]). To summarize briefly,
one can cut a closed surface up along certain closed geodesics so that each component
is a pair of pants (topologically, a sphere with three punctures). A hyperbolic metric on
each pair of pants is determined by the three “cuff lengths". There are 3genus(M)−3 to-
tal cuff lengths in any pants decomposition of M , but these lengths alone do not suffice
to determine the isometry type of M . (They account for exactly half of the 6genus(M)−6
Fenchel–Nielsen coordinates.) In addition to these cuff lengths, one needs to keep track
of “twist parameters", which dictate how the pants are glued back together to recon-
struct the surface, since twisting a cuff before gluing it to another of the same length
will change the isometry type of M . It turns out that these twist parameters can be
recovered from the lengths of finitely many additional closed geodesics (and as few
as 6genus(M)− 5 total lengths are needed to determine the isometry type of the sur-
face [64]).

It is natural to ask if marked length spectrum rigidity generalizes beyond this classi-
cal setting of hyperbolic surfaces. For hyperbolic metrics on higher dimensional closed
manifolds, Mostow’s strong rigidity theorem says the isometry type of g (up to rescaling)
is determined by the fundamental group of M alone [59], so it is not even necessary to
consider lengths of closed geodesics in this case.

In variable negative curvature, the situation is much more complicated, even for sur-
faces. The pants decomposition method above is not at all applicable in this setting.
Indeed, one can simply perturb the metric in the interior of a pair of pants without
changing any of the cuff lengths, so the metric cannot be described by finitely many
coordinates.

Nevertheless, Conjecture 1.1 was resolved in the case of (variably curved) surfaces
independently by both Otal [60] and Croke [18]. Prior to these results, partial progress
was made by Guillemin–Kazhdan in the case of one-parameter families of metrics
(deformation rigidity) [39] and by Katok in the case of metrics in the same conformal
class [49]. Later, Croke–Fathi–Feldman generalized Otal’s argument to surfaces of non-
positive curvature [20], and recently Guillarmou–Lefeuvre–Paternain devised a new ar-
gument that proves marked length spectrum rigidity for all surfaces whose geodesic
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flow is Anosov [38]. We also mention that Gogolev–Rodriguez Hertz proved a weighted
version of marked length spectrum rigidity for negatively curved surfaces [32, Corol-
lary 1.3].

In higher dimensions, Conjecture 1.1 was solved by Hamenstädt [43] in the case
where one of the two metrics is locally symmetric, using the entropy rigidity theorem
of Besson–Courtois–Gallot [6, 7]. A more direct proof also follows from work of Bour-
don [8]. More recently, the conjecture was solved locally, that is, for two metrics which
are sufficiently close in some suitable C k topology, by Guillarmou–Lefeuvre, using tech-
niques from microlocal analysis [37].

In these above works, the methods are of course different from the ones used for
hyperbolic metrics. Broadly speaking, the proofs all make use of dynamical properties
of the geodesic flow.

1.4. Main results on approximate rigidity. As mentioned above, in these variably
curved settings, it is not possible to describe a metric up to isometry by finitely many
closed geodesics. Indeed, one can simply perturb the metric in a neighborhood outside
any given finite set of closed curves. However, it is natural to ask if finitely many closed
geodesics can still provide approximate information about the metric.

Question 1.4. Does the marked length spectrum on a sufficiently large finite set approxi-
mately determine the metric?

Question 1.4 has not been previously considered anywhere in the literature as far as
we know (aside from the case of surfaces of constant negative curvature). All known
proofs of marked length spectrum rigidity in the variably curved setting rely on dynam-
ics of the geodesic flow. In particular, these proofs use limiting procedures involving
longer and longer closed geodesics. For example, the topological entropy h(g ) of the
geodesic flow is the exponential growth rate of periodic orbits, i.e., it can be obtained
from the marked length spectrum Lg as follows:

(1.1) h(g ) = lim
T→∞

log(#{γ ∈ Γ |Lg (γ)})

T
.

(See [9, 55, 56].) It is clear that changing Lg on a finite set does not affect the value of the
entropy; however, it is not at all clear what information can be obtained about h(g ) from
only knowing Lg on a finite set. On a related note, Sawyer proved that for negatively
curved surfaces, it is enough for Lg and Lg0 to agree on a set of conjugacy classes whose
complement has subexponential growth in order to conclude g and g0 are isometric [63].
In the local setting, Guillarmou–Knieper–Lefeuvre proved that g and g0 are isometric so
long as Lg and Lg0 agree asymptotically [36]. In particular, in both of the above cases,
rigidity holds if Lg and Lg0 coincide outside of a finite set, and Question 1.4 is a natural
counterpart to this.

We approach Question 1.4 in two steps. In [14], we show that a sufficiently large finite
set of closed geodesics approximately determines the full marked length spectrum, and
the approximation improves as the size of the set of known closed geodesics increases.
In fact, we only require that the length functions Lg and Lg0 coincide approximately
on this finite set:

Hypothesis 1.5. Let Γ denote the fundamental group of M . Let f : M → N be a homo-
topy equivalence, and let f∗ denote the induced map on fundamental groups. For L > 0,
let ΓL := {γ ∈ Γ |Lg (γ) ≤ L}. Now let ε> 0 small and suppose

1−ε≤ Lg0 ( f∗γ)

Lg (γ)
≤ 1+ε
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for all γ ∈ ΓL .

If L is sufficiently large, we obtain estimates for the ratio Lg0 /Lg on all of Γ in terms
of ε and L. Note that the estimates do not depend on the particular pair of metrics
under consideration; they are uniform for all (M , g ) and (N , g0) with pinched sectional
curvatures and injectivity radii bounded away from zero.

Theorem 1.6 ([14, Theorem 1.2]). Let (M , g ) and (N , g0) be closed Riemannian mani-
folds of dimension n with sectional curvatures contained in the interval [−Λ2,−λ2]. Let
Lg and Lg0 denote their marked length spectra. Let Γ denote the fundamental group of
M and let iN denote the injectivity radius of (N , g0). Suppose there is a homotopy equiva-
lence f : M → N and let f∗ denote the induced map on fundamental groups.

Then there is L0 = L0(n,Γ,λ,Λ, iN ) so that the following holds: Suppose the marked
length spectra Lg and Lg0 satisfy Hypothesis 1.5 for some ε > 0 and L ≥ L0. Then there
exist constants C > 0 and 0 <α< 1, depending only on n, Γ, λ,Λ, iN , so that

1− (ε+C L−α) ≤ Lg0 ( f∗γ)

Lg (γ)
≤ 1+ (ε+C L−α)

for all γ ∈ Γ.

Remark 1.7. A similar result can be deduced from the finite Livsic theorem of Gouëzel–
Lefeuvre [34, Theorem 1.2]. However, we opt for a more direct approach in order to show
how the constants involved depend explicitly on concrete Riemannian data. We discuss
this in greater detail in [14, Remark 2.10].

Remark 1.8. Recent work of Cantrell–Reyes improves the estimates in Theorem 1.6 above
to α= 1 using coarse-geometric methods [17, Theorem 8.1].

In light of this theorem, we now consider metrics g and g0 whose marked length spec-
tra are multiplicatively close on the set of all free homotopy classes of closed curves, as
in the hypothesis below:

Hypothesis 1.9. There is some small ε̃> 0 so that

1− ε̃≤ Lg0 ( f∗γ)

Lg (γ)
≤ 1+ ε̃

for all γ ∈ Γ, where Γ and f∗ are as in Hypothesis 1.5.

This reduces Question 1.4 to the following question for closed negatively curved man-
ifolds in general.

Question 1.10. If two metrics have marked length spectra which are not equal, but are
multiplicatively close (as in Hypothesis 1.9), is there a sense in which the metrics are close?

In [15], we answer Question 1.10 in dimension 2, and in higher dimensions when one
of the metrics is locally symmetric. These are two of the main cases where marked length
spectrum rigidity is known—due to Otal and Croke for surfaces [60, 18], and Hamenstädt
and Besson–Courtois–Gallot for higher dimensions [43, 6].

Question 1.10 was previously known for hyperbolic surfaces and in general for pairs
of metrics g and g0 on the same manifold M which are sufficiently close in some suit-
able C k topology. The first case is due to Thurston [68]. He showed that if (M , g ) and
(N , g0) are both surfaces of constant negative curvature, and f : M → N is a fixed home-
omorphism, then the best possible Lipschitz constant for a map F : M → N in the same

homotopy class as f is precisely supγ∈Γ
Lg0 ( f∗γ)

Lg (γ) . The second case is part of the previ-

ously mentioned work of Guillarmou–Knieper–Lefeuvre [36]. Their techniques provide
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explicit estimates (in a suitable Sobolev norm) for how close the metrics are in terms of

the ratio
Lg0
Lg

, or more precisely the geodesic stretch; in fact, their results hold more gen-

erally for non-positively curved metrics with Anosov geodesic flow. However, this work
requires g and g0 to be sufficiently close metrics (in some C k topology) on the same
manifold.

Our results in [14, 15] do not require the metrics to be close, nor do they require the
two metrics to be on the same manifold, but only on pairs of manifolds M and N with
isomorphic fundamental groups. In our setting (negative curvature), a standard result
in algebraic topology states any isomorphism of fundamental groups is induced by a
homotopy equivalence M → N , and a deep theorem of Farell–Jones states that this ho-
motopy equivalence can be upgraded to a homeomorphism (in dimensions not equal
to 3 or 4) [25]. However, M and N need not be diffeomorphic a priori [24, 26, 1, 2]. Our
results cover these cases as well.

In [15, Theorem 1.1], we prove an approximate version of Otal’s theorem [60] for cer-
tain pairs of surfaces (M , g ) and (M ,h) with bounded geometry. We consider the set
C (2,λ,Λ, v0,D0) of all closed C∞ Riemannian manifolds of dimension 2 with sectional
curvatures contained in the interval [−Λ2,−λ2], volume bounded below by v0, and di-
ameter bounded above by D0. We show pairs of such spaces become more isometric as
their marked length spectra get closer to one another. More precisely, we show that for
any L > 1, there exists ε̃= ε̃(L,λ,Λ, v0,D0) > 0 small enough so that the following holds.
For any pair (M , g ), (M ,h) ∈C (2,λ,Λ, v0,D0) satisfying

1− ε̃≤ Lg

Lh
≤ 1+ ε̃,

there exists an L-Lipschitz diffeomorphism f : (M , g ) → (M ,h).
Our main result of [15] is in the case where (N , g0) is a negatively curved locally sym-

metric space of dimension at least 3. We quantify how close g and g0 are to being isomet-
ric by estimating the derivative of a map F : M → N in terms of ε̃. This is considerably
stronger than our result [15, Theorem 1.1] for surfaces, since we are able to determine
how the Lipschitz constant depends on ε̃. This refines the rigidity result in [43, Corol-
lary to Theorem A], which corresponds to the case ε̃= 0 in the theorem below. As in [15,
Theorem 1.1], we only assume the marked length spectra of the two metrics are close;
we do not assume the metrics themselves are close in any C k topology.

Theorem 1.11 ([15, Theorem 1.2]). Let (M , g ) be a closed Riemannian manifold of di-
mension n ≥ 3 with fundamental group Γ and sectional curvatures contained in the in-
terval [−Λ2,0). Let (N , g0) be a locally symmetric space. Assume there is a homotopy
equivalence f : M → N and let f∗ denote the induced map on fundamental groups. Then
there exists small enough ε0 (depending on Γ) so that whenever ε̃≤ ε0 and

1− ε̃≤ Lg0 ( f∗γ)

Lg (γ)
≤ 1+ ε̃

for all γ ∈ Γ, there is a diffeomorphism F : M → N homotopic to f and constants
c1(ε̃,n,Γ,Λ) < 1 and C2(ε̃,n,Γ,Λ) > 1 such that for all v ∈ T M we have

c1∥v∥g ≤ ∥dF (v)∥g0 ≤C2∥v∥g .

More precisely, there exits a constant C = C (n,Γ,Λ) so that c1 = 1−C ε̃1/8(n+1) and C2 =
1+C ε̃1/8(n+1).

Remark 1.12. The conclusion of Theorem 1.11 can be restated as ∥g − F∗g0∥C 0 ≤
Cε1/8(n+1).
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Remark 1.13. If Ñ is a real, complex or quaternionic hyperbolic space, we can take
c1 = 1−Cε1/4(n+1) and C2 = 1+Cε1/4(n+1).

2. Dynamics of the geodesic flow

Some alternate intuition in support of Conjecture 1.1—which has led to significant
partial results in the setting of variable negative curvature—comes from dynamics. The
dynamical system under consideration is the geodesic flow, which we denote byφt . This
is a flow on the unit tangent bundle T 1M of (M , g ). The flow φt is defined as follows:
Given a unit tangent vector v , first consider the unique unit speed geodesic c(t ) with
initial condition c ′(0) = v . Now for any t ∈ R, define φt v to be the unit tangent vector
c ′(t ). A simple but important observation is that periodic orbits of φt correspond pre-
cisely to closed geodesics in M .

In our setting, that is, when (M , g ) is closed and negatively curved, the geodesic flow is
uniformly hyperbolic, more commonly known as Anosov (see [29, Definition 5.1.1]). This
hyperbolicity turns out to reveal significant information about the overall orbit struc-
ture of the flow (despite the fact that individual trajectories are highly sensitive to small
changes in initial conditions). For instance, periodic orbits of Anosov flows are dense. In
our geometric setting, this means vectors tangent to closed geodesics are dense in T 1M .
There are also stronger results about approximating certain trajectories of Anosov flows
with periodic ones, such as the Anosov closing lemma, which we discuss below. That
is to say, from the perspective of hyperbolic dynamics, it is natural to expect periodic
orbits of the geodesic flow to provide significant information about the flow.

Definition 2.1. (See [29, Definition 5.1.1].) A flowφt on T 1M is said to be Anosov if there
is a splitting

T (T 1M) ∼= X ⊕E s ⊕E u

into dφt -invariant subbundles, where X denotes the vector field tangent to the flow
direction, and E s and E u denote the stable and unstable distributions, respectively. Vec-
tors in the stable bundle are uniformly exponentially contracted under dφt , whereas
vectors in the unstable bundle are uniformly expanded.

To illustrate why the geodesic flow is Anosov when M is negatively curved, we will de-
scribe the (strong) stable and (strong) unstable foliations W ss ,W su ⊂ T 1M . The leaves
of these foliations are tangent to the stable and unstable distributions E s and E u , re-
spectively. (See, for instance, [3, p. 72].) Let v ∈ T 1M̃ . Let p ∈ M̃ be the footpoint of v
and let ξ ∈ ∂M̃ be the forward projection of v ∈ T 1M̃ to the visual boundary at infinity.
Let Bξ,p denote the Busemann function on M̃ and let Hξ,p denote its zero set. Then the
lift of W ss (v) to T 1M̃ is given by{−gradBξ,p (q)

∣∣q ∈ Hξ,p
}
.

In other words, these are vectors normal to the horosphere Hξ,p which are pointing to-
wards ξ. If η denotes the projection of −v to the boundary ∂M̃ , then the lift of W su(v) to
T 1M̃ is analogously given by {

gradBη,p (q)
∣∣q ∈ Hη,p

}
.

These are vectors orthogonal to Hη,p and whose negatives point towards η.
Such a family of vectors gives rise to a geodesic variation, and the verification that

the geodesic flow on T 1M is Anosov boils down to estimates of the norms of the Jacobi
fields (together with their covariant derivatives) associated to these variations. The idea
is to use the Rauch comparison theorem to compare with the constant curvature set-
ting; here, the Jacobi equation can be solved explicitly, thereby concretely illustrating
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the desired exponential divergence/convergence of nearby geodesics. For further de-
tails see [3, Proposition IV.1.13 and Proposition IV.2.15]. A slightly different approach is
given in [29, Theorem 5.2.4].

Anosov flows are often described as chaotic, since a slight change of initial condition
(in the unstable direction) causes exponential divergence of trajectories. Nevertheless,
we have the following strong result about approximating certain trajectories with peri-
odic ones. See, for instance, [29, Theorem 5.3.10]. In the statement of Lemma 2.2 below,
d denotes the Riemannian distance on the unit tangent bundle induced by g .

Lemma 2.2 (Anosov closing lemma). There is δ0 > 0 sufficiently small, T sufficiently
large, and a constant C > 0 so that the following holds for all δ ≤ δ0 and all t ≥ T . Sup-
pose v,φt v ∈ T 1M are so that d(v,φt v) < δ. Then either v and φt v are on the same local
flow line or there is w with d(v, w) <Cδ so that w is tangent to a closed geodesic of length
t ′ ∈ [t −Cδ, t +Cδ].

Put briefly, the Anosov closing lemma says that “almost periodic" trajectories are
shadowed by periodic ones. Any flow which preserves some finite measure µ has an
abundance of such almost periodic trajectories. Indeed, the Poincaré Recurrence The-
orem [50, Theorem 4.1.19] implies that µ-almost every v will return arbitrarily close to
itself after flowing for a sufficiently long time. This applies to the geodesic flow of any
closed Riemannian manifold M because the flow preserves the Liouville measure, a nat-
ural measure on T 1M induced by the Riemannian volume of M . If M is, in addition,
negatively curved, the Anosov closing lemma implies that periodic orbits are also abun-
dant; in particular, they are dense in T 1M .

As mentioned above, the Anosov closing lemma suggests that knowledge of the
marked length spectrum should provide significant information about the underlying
geodesic flow. This intuition leads to the following fact. (See [40]. Below, we outline an
alternate standard approach, which uses the Livsic theorem [53].)

Proposition 2.1. Let (M , g ) and (N , g0) be a pair of homotopy-equivalent closed nega-
tively curved manifolds such that their marked length spectra Lg and Lg0 coincide. Let
φt and ψt denote the associated geodesic flows on the unit tangent bundles T 1M and
T 1N , respectively. Then the flows φt and ψt are conjugate, that is, there is a homeomor-
phism F : T 1M → T 1N so that

F (φt v) =ψt F (v)

for all v ∈ T 1M.

The conjugacy F is a strong form of equivalence between the flows φt and ψt as it
preserves dynamically defined invariants, such as periodic orbits (together with their
lengths), the stable and unstable manifolds, and the topological entropies.

Without any assumptions on the length functions Lg and Lg0 , that is, whenever
(M , g ) and (N , g0) are homotopy-equivalent closed negatively curved manifolds, Gro-
mov proved the associated geodesic flows are orbit-equivalent [35]. This means there is
a homeomorphism F ′ : T 1M → T 1N such that

F ′(φt v) =ψa(t ,v)F ′(v)

for some function a(t , v) onR×T 1M . This is a weaker form of equivalence than a conju-
gacy; for instance, the map F ′ takes stable/unstable manifolds to weak stable/unstable
manifolds, that is, manifolds tangent to the distributions E s⊕X and E u⊕X , respectively.
Periodic orbits are preserved by F ′, but not their lengths, since Lg and Lg0 do not in
general coincide.

The additional condition Lg = Lg0 is sufficient to upgrade the above orbit equiva-
lence to a conjugacy. See [50, Section 2.2]. The key tool used is the Livsic Theorem [53]
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(see also [50, Theorem 19.2.1]), whose proof in turn relies on the Anosov closing lemma,
together with the fact that the geodesic flow has a dense orbit.

While the conjugacy F : T 1M → T 1N provides significant dynamical information
about the geodesic flows φt and ψt , it does not give immediate information about the
underlying metrics g and g0 on M and N . Showing g and g0 are isometric entails finding
a map from M to N , and it is not clear whether the conjugacy F : T 1M → T 1N between
unit tangent bundles is fiber-preserving, i.e., descends to the base manifolds. (Another
difficulty to note is that F may only be of Cα regularity, not necessarily differentiable.)
Proving marked length spectrum rigidity (Conjecture 1.1) thus requires more sophisti-
cated considerations of the geometry and dynamics of the geodesic flow.

In Croke’s proof of marked length spectrum rigidity for surfaces [18], he obtains the
desired isometry f : M → N directly from the conjugacy F : T 1M → T 1N . He consid-
ers the image under F of the fiber T 1

p M of all unit tangent vectors based at a single

point p, together with the associated geodesics in the universal cover Ñ . Croke proves
that these geodesics must all intersect at a single point q (by showing the Jacobi field
arising from the geodesic variation of F (T 1

p M) vanishes at some point). Thus, the con-

jugacy F : T 1M → T 1N descends to a map f : M → N . The fact that the conjugacy is
time-preserving immediately implies that f is distance-preserving and hence an isom-
etry. Otal’s methods in [60] are different from Croke’s, but the overall approach is similar
in spirit. While Otal does not work directly with the conjugacy between unit tangent
bundles, he shows the associated correspondence of geodesics takes the geodesics with
initial vectors in T 1

p M̃ to geodesics intersecting in a single point q ∈ Ñ , thereby obtaining
a map f : M → N . Both authors’ constructions rely heavily on the dimension 2 hypothe-
sis; simply put, this is the setting in which it is easiest for pairs of geodesics to intersect.

Hamenstädt partially resolved Conjecture 1.1 in dimensions 3 and greater [43], a
setting where Otal and Croke’s constructions of the desired isometry do not readily
generalize. Instead, she leverages additional rigidity properties enjoyed by negatively
curved metrics in higher dimensions, namely, the celebrated entropy rigidity theorem
of Besson–Courtois–Gallot [6] (see [62] for the Cayley case). Below, we state the relevant
special case of the theorem, which is the subject of the survey article [7].

Theorem 2.3 (Besson–Courtois–Gallot). Let (N , g0) be a compact negatively curved lo-
cally symmetric space of dimension n ≥ 3 and let (M , g ) be a negatively curved Riemann-
ian manifold which is homotopy-equivalent to N . Suppose that the topological entropies
h(g ) and h(g0) of their geodesic flows coincide and that the total volumes Volg (M) and
Volg0 (N ) coincide. Then there is an isometry F : (M , g ) → (N , g0).

Remark 2.4. If (M , g ) is also negatively curved and locally symmetric, this reduces to
Mostow rigidity (see [28, Corollary 1.3]). Note also that this statement fails in dimen-
sion 2 for the same reasons as Mostow rigidity. Indeed, take any two non-isometric sur-
faces (M , g ) and (M , g0) of constant curvature−1 (there is a (6genus(M)−6)-dimensional
Teichmüller space of such metrics). By Gauss–Bonnet, the total areas of both surfaces
agree. By [54], the topological entropy of the geodesic flow is equal to the volume growth
entropy, that is, the exponential growth rate of balls in the universal cover. These must
also coincide because both surfaces are covered by the hyperbolic plane.

In the setting of the statement of Theorem 2.3, Hamenstädt obtains marked length
spectrum rigidity by showing that Lg = Lg0 implies Volg (M) = Volg0 (N ) [43, Theorem
A]. The equality of entropies is automatic in this case, for instance using (1.1), or even
Proposition 2.1. Hence, M and N are isometric by Theorem 2.3.
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3. Methods

We now give an overview of the proofs of our main results. First, we discuss Theo-
rem 1.11, which is our approximate version of Hamenstädt’s marked length spectrum
rigidity result. Recall this is in the higher dimensional setting, when one of the two met-
rics is locally symmetric. Theorem 1.11 states that if the length functions Lg and Lg0 are
multiplicatively close, the two metrics are bi-Lipschitz equivalent with constant close to
1. Afterwards, we discuss Theorem 1.6, our result that finitely many closed geodesics
determine the full marked length spectrum approximately.

Before we explain our proof of Theorem 1.11, we recall Hamenstädt’s approach for
the ε̃= 0 case. In [43, Theorem A], Hamenstädt proves that two negatively curved man-
ifolds with the same marked length spectrum have the same volume, provided one of
the manifolds has geodesic flow with C 1 Anosov splitting, a condition which holds in
particular for locally symmetric spaces. (The Anosov splitting of the geodesic flow on
the unit tangent bundle T 1N refers to the flow-invariant decomposition of T T 1N into
the stable, unstable and flow directions as in Definition 2.1 above; see, for instance, [29,
Definition 5.1.1].)

Thus, if M and N satisfy the assumptions of Theorem 1.11 for ε̃ = 0, they must have
the same volume. Then, since the marked length spectrum determines the topologi-
cal entropy of the geodesic flow, the fact that the two manifolds are isometric follows
from the celebrated entropy rigidity theorem of Besson–Courtois–Gallot [7, 6]. (See also
Theorem 2.3 above for the statement.)

Our proof of Theorem 1.11 consists of the same two key steps as in the ε̃ = 0 case:
the volume step and the entropy rigidity step. First, we first show an approximate ver-
sion of Hamenstädt’s volume theorem (Theorem 3.1 below), that is, if the ratio of Lg

and Lg0 is close to 1, so is the ratio of the volumes Volg (M) and Volg0 (N ). It is clear
from (1.1) that the ratio of the entropies must also be close to 1 in this case. The second
main step in our proof of Theorem 1.11 is then an approximate version of the Besson–
Courtois–Gallot entropy rigidity theorem. We estimate the derivative of the natural map
F : M → N constructed in [7] under the assumption that the volumes and entropies of
M and N are almost equal instead of equal. This assumption is satisfied when the length
functions Lg and Lg0 are multiplicatively close, but otherwise our proof does not use
this hypothesis on the lengths.

3.1. The volume step. To prove Theorem 1.11, we start by proving an analogue of [43,
Theorem A] under the assumption the marked length spectra satisfy Hypothesis 1.9, i.e.,
we estimate the ratio Vol(M)/Vol(N ) in terms of ε̃. In order to obtain an explicit estimate,
we assume the Anosov splitting is C 1+α instead of C 1. (For geodesic flows on manifolds
with strictly 1

4 -pinched negative curvature, the Anosov splitting is C 1+α for some α> 0.
The splitting is C 1 by work of Hirsch–Pugh [46] and C 1+α by work of Hasselblatt [44,
Theorem 5, Remark after Theorem 6].) Unlike in Theorem 1.11, the constants here do
not depend on (M , g ) in any way.

Theorem 3.1 ([15, Theorem 1.4]). Let (M , g ) be a closed negatively curved Riemannian
manifold with fundamental group Γ. Let (N , g0) be another closed negatively curved
manifold with fundamental group Γ and assume the geodesic flow on T 1N has C 1+α

Anosov splitting. Suppose the marked length spectra of M and N satisfy

1− ε̃≤ Lg0 (γ)

Lg (γ)
≤ 1+ ε̃

for all γ ∈ Γ. Then there is a constant C depending only on Ñ such that

(1−C ε̃α)(1− ε̃)nVol(M) ≤ Vol(N ) ≤ (1+C ε̃α)(1+ ε̃)nVol(M).
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If, in addition, (N , g0) is locally symmetric and ε̃ is sufficiently small (depending on n =
dim N ), then α can be replaced with 2 in the above estimates and the constant C depends
only on n.

Remark 3.2. If the Anosov splitting of T 1N is only C 1, then our proof shows the quanti-
ties (1±C ε̃α) can be replaced with constants that converge to 1 as ε̃→ 0, but we are not
able to determine the explicit dependence of these constants on ε̃.

Remark 3.3. If N is locally symmetric, then Vol(N ) ≤ (1+ ε)nVol(M) follows from (1.1)
and the proof of the main theorem in [7]. However, the lower bound for Vol(N )/Vol(M)
in Theorem 3.1 is also crucial for the proof of Theorem 1.11.

Remark 3.4. If dim M = dim N = 2, then our proof of Theorem 3.1 shows

(1−ε)2Vol(M) ≤ Vol(N ) ≤ (1+ε)2Vol(M),

which is the optimal estimate. This result also follows from [19, Theorem 1.1].

The key concept used in Hamenstädt’s proof of the above theorem in the ε̃ = 0 case
is the Liouville measure. This is a measure on the unit tangent bundle T 1M , which we
denote by µ. On the one hand, this measure is compatible with the volume on M arising
from the Riemannian metric g . More precisely, in a coordinate chart U ×Sn−1 ⊂ T 1M ,
the measure µ is locally the product of Riemannian volume on U ⊂ M and Lebesgue
measure on the fiber Sn−1. Thus, the total volume of M is determined by the total mea-
sure µ(T 1M).

On the other hand, the Liouville measure is geodesic flow–invariant, and this dynam-
ical point of view is better suited to investigating the relationship between µ and the
marked length spectrum. This alternative description of µ comes from a natural con-
tact structure on the unit tangent bundle. Let ω be the 1-form on T 1M obtained by
pulling back the canonical 1-form on T ∗M to T M via the identification induced by the
Riemannian metric and then restricting to T 1M . If X denotes the vector field on T 1M
generating the geodesic flow, a straightforward calculation shows that ω(X ) ≡ 1. This,
in turn, shows that ω is a flow-invariant contact form, meaning ω∧ (dω)n−1 is a flow-
invariant volume form on T 1M . The measure arising from this volume form coincides
(up to a constant multiple) with the local product description of the Liouville measure
given above; see, for instance, [12, 1.E].

Incidentally, the volume form ω∧ (dω)n−1 leads directly to an alternative local prod-
uct structure for µ. Roughly speaking, ω can be viewed as a one-dimensional measure
in the flow direction, whereas (dω)n−1 can be interpreted as a measure on the space
of geodesics transverse to the flow. The space of geodesics G M̃ in the universal cover
M̃ is defined as the quotient of T 1M̃ by the geodesic flow, that is, we identify any two
unit tangent vectors on the same geodesic. (In negative curvature, the space G M̃ is also
identified with pairs of distinct points in the visual boundary at infinity ∂M̃ .) Since the 2-
form dω is flow-invariant, it descends to a 2-form on G M̃ , where it is a symplectic form;
in other words, (dω)n−1 is a volume form on the space of geodesics. We call the associ-
ated measure the Liouville current, which we denote by λ. As such, we can locally write
the Liouville measure as dµ= d t ×dλ, where d t is 1-dimensional Lebesgue measure on
orbits and dλ is the Liouville current on the space of geodesics G M̃ .

To show the marked length spectrum determines, or approximately determines, the
total Riemannian volume, it thus suffices to consider the measures d t (the time compo-
nent) and dλ (the Liouville current) separately.

3.1.1. The Liouville current. The key tool that connects the marked length spectrum to
the Liouville current is the cross-ratio, which goes back to Otal’s proof of marked length
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spectrum rigidity for surfaces. While many of Otal’s methods contrast with Hamen-
städt’s, the fact that the marked length spectrum determines the Liouville current is a
key step in both proofs.

The cross-ratio associated to a closed negatively curved manifold (M , g ) is the follow-
ing function on quadruples of distinct points a,b,c,d in the visual boundary at infinity
∂M̃ . See [61, Lemma 2.1].

Definition 3.5. Let ai ,bi ,ci ,di ∈ M̃ be sequences converging to a,b,c,d ∈ ∂M̃ , respec-
tively. Define

(3.1) [a,b,c,d ] = lim
i→∞

d(ai ,ci )+d(bi ,di )−d(ai ,di )−d(bi ,ci ),

where d is the Riemannian distance function. By [61, Lemma 2.1], this limit exists and
is independent of the chosen sequences ai ,bi ,ci ,di . We call [· , · , · , ·] the cross-ratio.

The cross-ratio is completely determined by the marked length spectrum for mani-
folds M of any dimension [61, Theorem 2.2]. The basic idea is to approximate each of the
four distances in (3.1) by lengths of closed geodesics using the Anosov closing lemma.
In our setting, it is straightforward to verify that if the ratio Lg /Lg0 is between 1± ε̃, so
is the ratio of the cross-ratios [15, Proposition 2.3].

In the proof of [60, Theorem 2], Otal explicitly relates the Liouville current and the
cross-ratio in dimension 2 (though the word “cross-ratio" never appears in this paper).
Let a,b,c,d ∈ ∂M̃ be four distinct points. When dim(M) = 2, the boundary ∂M̃ is a circle;
hence, the pair of points (a,b) determines an interval in the boundary (after fixing an
orientation). Let (a,b)× (c,d) ∈ G M̃ denote the geodesics starting in the interval (a,b)
and ending in the interval (c,d). In the proof of [60, Theorem 2], Otal shows

(3.2) λ((a,b)× (c,d)) = 1

2
[a,b,c,d ].

(See also [45, Theorem 4.4].)
In [43], Hamenstädt relates the cross-ratio and the Liouville current in higher dimen-

sions. The proof uses several technical constructions, but the key idea is an insightful
dynamical interpretation of the cross-ratio, which explicitly relates it to the symplectic
form dω. (This interpretation of the cross-ratio is also explained in [72, Section 2.3].)

The tool which relates the cross-ratio and dω is the temporal function (see also [42]).
This is a ubiquitous object in the study of (contact) Anosov flows. Consider a point v ∈
T 1M and let W ss (v) be the leaf of the strong stable foliation through v . Let W ss

δ
(v) =

W ss (v)∩B(v,δ), where B(v,δ) is a ball of radius δwith respect to some fixed Riemannian
distance on the unit tangent bundle. Define W su

δ
(v) analogously. Let w ∈ W su

δ
(v) and

let z ∈W ss
δ

(v). Then there is a unique timeσ=σ(w, z) so that the intersection W su(w)∩
W ss (φσz) consists of a single point, denoted [w, z] [29, Proposition 6.2.2]. We callσ(w, z)
the temporal function. See Figure 1.

When the Anosov flow φt preserves a contact form ω, the temporal function is
nonzero. Indeed, the contact condition implies that the distribution ker(ω) is maximally
non-integrable, and the Anosov condition (or more generally, hyperbolicity) implies the
stable and unstable distributions E s and E u are contained in kerω. It then follows that
E s and E u are not jointly integrable, and hence σ(w, z) ̸= 0.

In addition, σ(w, z) can be computed from the symplectic form dω as follows (see
also [41, Lemma 2.1]). Consider a C 1 surface S bounded by the five arcs in Figure 1, i.e.,
the ones connecting the points v, w, [w, z],φ−σ[w, z], z. Note that with the exception of
the flow line from [w, z] to φσ[w, z], these arcs are all tangent to vectors in kerω. By
Stokes’ theorem, we obtain ∫

S
dω=

∫
∂S
ω=σ(w, z).
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Figure 1. The temporal function seen dynamically and geometrically

It turns out that the temporal function can also be expressed in terms of the cross-
ratio. More precisely, for any v ∈ T 1M , let π(v) denote the projection to ∂M̃ along the
geodesic ray with initial velocity v . Then for w and z as above we have

σ(w, z) = [π(v),π(w),π(−z),π(−v)].

To see this, we start by specializing the above dynamical definition of the temporal func-
tion to our geometric setting (see Figure 1). Recall w ∈W su

δ
(v) and z ∈W ss

δ
(v). Now con-

sider the stable horosphere through the basepoint of w and the boundary point π(w).
Similarly consider the horosphere through π(−z) and the basepoint of z. Then the vec-
tor [w, z] is the normal vector of the horosphere associated to W ss (w) which also lies
on the geodesic starting at π(−z) and ending at π(w). Thus, σ(w, z) is simply the dis-
tance the between the horospheres associated to W su(w) and W ss (z), as illustrated in
the righthand panel of Figure 1.

The cross-ratio as defined in Definition 3.5 can also be directly related to distances
between horospheres. This idea is used in the proof of [61, Lemma 2.1]. Let a,b,c,d ∈
∂M̃ and take four disjoint horospheres Ha , Hb , Hc , Hd based at each of these points. Now
consider the four bi-infinite geodesics [a,d ], [b,c], [a,c], [b,d ]. The intersection of these
bi-infinite geodesics with M̃ \ (Ha ∪ Hb ∪ Hc ∪ Hd ) consists of four finite geodesic seg-
ments. Then the limit in (3.1) is equal to the analogous sum of signed lengths of these
four geodesic segments. Furthermore, this quantity does not depend on the choice of
horospheres. (See the proof of [61, Lemma 2.1].) One can choose larger horospheres so
that all but one of the four terms is zero, and the nonzero term is equal to σ(w, z). This
is illustrated in [72, Figure 14].

In summary, the cross-ratio can be viewed as a “coarse version of the symplectic
structure on the space of geodesics" [43, p. 115]. When M has geodesic flow with C 1

Anosov splitting, the temporal function σ is C 1, and in this case the value of dω(X ,Y )
can be obtained directly from the cross-ratio by differentiating σ in the direction (X ,Y ).
This is discussed in Lemma 2.1 of Hamenstädt’s earlier paper [41]. In fact, the main re-
sult of this paper shows the marked length spectrum determines the volume when both
M and N have C 1 Anosov splitting [41, Corollary 1]. In [43], Hamenstädt extends this
to the case where only one of the two manifolds has C 1 Anosov splitting, which intro-
duces significant technical difficulties. The proof involves complicated constructions
of auxiliary measures S and P determined by the cross-ratio (and hence the marked
length spectrum). These measures are in turn defined as limits of measures Sδ and Pδ
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as δ→ 0, where the definitions of Sδ and Pδ involve covering subsets of the boundary
∂M̃ by certain sets (quasi-symplectic balls) of diameter less than δ.

As mentioned before, in our setting of multiplicatively close length functions Lg and
Lg0 (Hypothesis 1.9), it is straightforward to verify the cross-ratios arising of (M , g ) and
(N , g0) are also multiplicatively close. One might then expect S N and S M approxi-
mately coincide as well (and similarly for P ); however, the approximate equality of
cross-ratios only implies the measures S M

ε̃ and S N
ε̃ are close (where ε̃ is the number in

Hypothesis 1.9). As such, we undertake a detailed analysis of Hamenstädt’s construction
to quantify the rate at which Sδ converges to S . We also investigate this convergence
more precisely when N is locally symmetric. Here, we use the analyticity of the Anosov
splitting to compute part of the power series expansion of the temporal function in or-
der to obtain a better volume estimate in this setting (replacingαwith 2 in Theorem 3.1).
This estimate is the starting point for the subsequent entropy rigidity step in the proof
of our main result (Theorem 1.11).

3.1.2. The time component. In Hamenstädt’s setting of Lg =Lg0 , Proposition 2.1 gives
a time-preserving conjugacy F : T 1M → T 1N of geodesic flows; in other words, F pre-
serves the d t component of dµ. In contrast, if the length functions do not coincide
exactly, the flows cannot be conjugate, though they are still orbit-equivalent by [35] (as
mentioned after the statement of Proposition 2.1). Recall that an orbit equivalence of
flows φt and ψt on T 1M and T 1N , respectively, is a homeomorphism F : T 1M → T 1N
such that

F (φt v) =ψa(t ,v)F (v)

for all t ∈ R and v ∈ T 1M . In [15], we prove our volume estimate in Theorem 3.1 by
delicately implementing Gromov’s construction of F in [35]. More precisely, we use the
assumption of approximately equal lengths (Hypothesis 1.9) to show the time change
a(t , v) is close to t on sets of large measure. This, together with an estimate of the ratios
of Liouville currents λg and λg0 discussed above, allows us to show the total Liouville
measures of T 1M and T 1N are close.

In order to further explain our approach, we now explain Gromov’s construction of
the orbit equivalence F from [35]. Recall (M , g ) and (N , g0) are closed negatively curved
manifolds with isomorphic fundamental groups. Since the universal covers M̃ and Ñ
are contractible, all higher homotopy groups of M and N are trivial; hence, the isomor-
phism of fundamental groups is induced by a homotopy equivalence f : M → N , and
this homotopy equivalence can be taken to be C 1, and hence Lipschitz. The compact-
ness of M and N guarantees that the lift f̃ : M̃ → Ñ of this homotopy equivalence to the
universal covers is a quasi-isometry [4, Proposition C.1.2]. This means that if c(t ) is a
geodesic in M̃ , then f̃ (c(t )) is a quasi-geodesic in Ñ . The Morse lemma in turn implies
that there is a unique geodesic η in Ñ which is within bounded Hausdorff distance of
the quasi-geodesic f̃ ◦ c [10, Theorem III.H.1.7].

By definition, an orbit equivalence F of geodesic flows should take vectors tangent
to the geodesic c(t ) in M̃ to tangent vectors along some geodesic in Ñ , and the geodesic
η described above is a natural candidate for this. As such, let Pη : Ñ → η denote the
orthogonal projection map. Define F0(c ′(t )) to be the tangent vector to Pη( f̃ (c(t )) at
time t . Let v = c ′(0). Then there is some function b(t , v) so that F0(φt v) =ψb(t ,v)F0(v)
for all t ∈ R. However, F0 is not an orbit equivalence, because it is possible for a fiber
of the normal projection to intersect the quasi-geodesic f̃ (c(t )) in more than one point;
thus, F0 is not necessarily injective.
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In order to fix this problem, Gromov replaces the function b(t , v) in the definition of
F0 with an average of itself over a sufficiently long interval. In other words, let

ac (t , v) = 1

c

∫ t+c

t
b(s, v)d s.

Then there is a large enough c, depending only on the quasi-isometry constants of f̃ ,
so that t 7→ ac (t , v) is injective for all v . Then F (φt v) :=ψac (t ,v)F0(v) is an orbit-equiv-
alence of geodesic flows. (For details, see [15, Proposition 2.25] or [52].)

Remark 3.6. Another well-known way to obtain an orbit equivalence of geodesic flows is
using Anosov structural stability, which states that a sufficiently nice perturbation of an
Anosov flow is orbit-equivalent to the original one [29, Theorem 5.3.6]. In the Riemann-
ian setting, the hypotheses of structural stability apply to pairs of geodesic flows arising
from pairs of sufficiently nearby metrics on the same manifold. Gromov’s orbit equiva-
lence in [35] can thus be thought of as a global version of structural stability for geodesic
flows. The proof of structural stability uses the shadowing property of Anosov flows to
approximate orbits of the perturbed flow by genuine orbits; in Gromov’s construction,
the Morse lemma can be thought of as a global analogue of this shadowing property.
(In dimension 2, Anosov structural stability can be made global directly, since the space
of all negatively curved metrics on a surface is path-connected (the proof is sketched
in [72, Proposition 3.1]); however, this path-connectedness fails in high enough dimen-
sions [27].)

In our proof of Theorem 3.1, we use the assumption of approximately equal length
functions (Hypothesis 1.9) to show that for very large c, the time-change cocycle ac (t , v)
is close to t on sets of large measure. We consider the speed of the orbit equivalence, i.e.,
the derivative

d

d t
ac (t , v)

∣∣∣∣
t=0

= b(c, v)

c
,

and we seek to show this expression can be made close to 1 for large enough c. We do
this by interpreting the righthand side above as an ergodic average, and then use the
ergodic theorem to show that for almost every v , the quantity b(c, v)/c converges to a
limit which can in turn be well-approximated by the ratio Lg (γ)/Lg0 (γ) for a suitable γ
using [65, Theorem 1]. By Hypothesis 1.9, this ratio is close to 1 as desired.

Remark 3.7. The above approach is different in strategy from the proof of Proposition 2.1
outlined above. Our method gives an orbit equivalence which has speed close to 1, but
only on a subset of T 1M of large measure. Since we are only trying to estimate the total
volumes of M and N , and not the Liouville measure of small sets in T 1M and T 1N ,
this is sufficient for our purposes. Note that our proof does not make use of any Livsic
theorems. There are approximate versions of the Livsic theorem which apply to our
setting such as [34, Theorem 1.2] and an earlier special case [51], but the estimates in
the conclusions of these theorems involve constants which a priori depend on the given
flow, so we opted for a more direct approach.

Remark 3.8. An alternate approach to obtaining a controlled orbit equivalence under
Hypothesis 1.9 follows from a construction of Bourdon [8, Section 1.4]. Bourdon con-
structs a conjugacy of geodesic flows between CAT(−1) spaces, which are a generaliza-
tion of negatively curved Riemannian manifolds, under the assumption that the bound-
ary map f : ∂M̃ → ∂Ñ preserves the cross-ratio. The construction starts with an identifi-
cation of T 1M̃ with triples of distinct points in ∂M̃ . (Note that for dimensional reasons,
such an identification is not one-to-one when dim M = n ≥ 3). The boundary map f
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induces a map on triples of points in the boundary, and this map descends to a well-
defined map of unit tangent bundles so long as f preserves quadruples of points with
zero cross-ratio. By [15, Proposition 2.3], this holds so long as the length functions satisfy

A ≤ Lg

Lg0
≤ B for any A,B > 0. By Hypothesis 1.9, this holds for A = 1− ε̃,B = 1+ ε̃. In this

setting, the map f approximately preserves the cross-ratio, and in this case Bourdon’s
construction of the conjugacy can be easily seen to be an orbit equivalence with speed
between 1±ε.

3.2. The entropy rigidity step. In [43], Hamenstädt obtains a marked length spectrum
rigidity result by using the entropy rigidity theorem of Besson–Courtois–Gallot [7] (The-
orem 2.3 above). Recall this theorem says (M , g ) is isometric to its homotopy-equivalent
locally symmetric counterpart (N , g0) whenever equality of volumes and equality of en-
tropies are satisfied. To prove our approximate marked length spectrum rigidity result
Theorem 1.11, we consider instead the entropy stability problem: if the equalities of vol-
umes and entropies are replaced with almost equalities, is g close to the locally symmet-
ric metric g0? Related questions have been considered by Bessières–Besson–Courtois–
Gallot [5], and very recently by Song [66].

We begin by recalling the construction of the map F : M → N in [7]. We then summa-
rize the proof that F is an isometry in the case of equal entropies and volumes, before
explaining how to modify it for approximately equal entropies and volumes.

Given p ∈ M̃ , let µp be the Patterson-Sullivan measure on ∂M̃ . Let f : ∂M̃ → ∂Ñ be
the boundary homeomorphism induced by the given homotopy equivalence f : M → N .
(As discussed above, the map f : M → N can be lifted to f̃ : M̃ → Ñ , and compactness of
M and N implies f̃ is a quasi-isometry. Thus, f̃ can be extended to a homeomorphism f
between the boundaries ∂M̃ and ∂Ñ .)

Now define F (p) = bar( f∗µp ), where bar denotes the barycenter map (see [7] for more
details). (As discussed in [7], the technique of using barycenters of measures on the
boundary originates in [31, 21, 11].)

By the definition of the barycenter, the map F has the implicit description∫
∂Ñ

dBF (p),ξ(·)d( f ∗µp )(ξ) = 0,

where ξ ∈ ∂Ñ and BF (p),ξ is the Busemann function on (Ñ , g0). This is a Γ-equivariant
map M̃ → Ñ , and thus descends to a map M → N . Abusing notation, we call F : M → N
the BCG map. By the implicit function theorem, the BCG map F is C 1 (actually, C 2 since
Busemann functions on M̃ are C 2 [3, Proposition IV.3.2]), and its derivative dFp satisfies∫

∂Ñ
HessB N

F (p),ξ(dFp (v),u)d( f ∗µp )(ξ) = h(g )
∫
∂Ñ

dB N
F (p),ξ(u)dB M

p, f
−1

(ξ)
(v)d( f ∗µp )(ξ)

for all v ∈ Tp M and u ∈ TF (p)N [7, (5.2)].
Without any assumptions about the volumes or entropies, the following inequality

holds; see [62] for the Cayley case.

Lemma 3.9 ([7, Proposition 5.2(i)]).

|JacF (p)| ≤
(

h(g )

h(g0)

)n

.

As in the proof of [7, Theorem 5.1], the above lemma relates the volumes of M and N
as follows:

(3.3) Vol(N , g0) ≤
∫

M
|F∗dVol| =

∫
M
|(JacF )dVol| ≤

(
h(g )

h(g0)

)n

Vol(M , g ).
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Remark 3.10. This, together with (1.1), improves one of the inequalities in Theorem 3.1
in the special case where N is a locally symmetric space.

With this setup in mind, the argument in [7] showing that F is an isometry consists of
the following components:

(1) If the volumes and entropies are equal, then the inequalities in (3.3) are all equal-
ities, which gives equality in Lemma 3.9.

(2) This forces several other inequalities in the proof of Lemma 3.9 to be equalities,
which forces certain matrices to be scalar matrices. (For example, if equality
holds in the arithmetic-geometric mean inequality

det A ≤
(

trace(A)

n

)n

,

then A is a scalar matrix.) The end of the proof of [7, Proposition 5.2(ii)] then

shows that dFp has all its eigenvalues equal to the ratio h(g0)
h(g ) , which means F is

an isometry in the case where the entropies are equal. This concludes the proof
of [7, Theorem 1].

Assuming instead that 1− ε̃≤ Lg0
Lg

≤ 1+ ε̃, the equalities of volumes and entropies are

replaced with the conclusions of Theorem 3.1 and Lemma 1.1 respectively. Proceeding
as in the above outline, we can instead obtain estimates for ∥dFp∥ in terms of ε̃:

(1) We show equality almost holds in (3.3); that is, we find a lower bound for JacF (p)
of the form β(h(g )/h(g0))n for suitable β.

(2) This implies the above-mentioned matrices are almost scalar matrices, in that
their eigenvalues are all approximately equal. We then mimic the proof of [7,
Proposition 5.2(ii)] to obtain bounds for the eigenvalues of dFp , which com-
pletes the proof of Theorem 1.11.

The main difficulty is step (1), where we cannot simply mimic the arguments in [7].
Indeed, with the above assumptions about the entropies (1.1) and the volumes (Theo-
rem 3.1), the inequalities in (3.3) become

(1−C ε̃2)(1− ε̃)n 1

(1+ ε̃)n

(
h(g )

h(g0)

)n

Vol(M) ≤
∫

M
|JacF | ≤

(
h(g )

h(g0)

)n

Vol(M),

which does not give a lower bound for the integrand. In order to obtain a lower bound
for |JacF |, we use the above lower bound for its integral together with a Lipschitz bound
for the function p 7→ |JacF (p)|. The fact that this function is Lipschitz is immediate from
the fact that F is C 2; however, it is not clear a priori how the Lipschitz bound depends

on (M , g ). Assuming 1− ε̃ ≤ Lg0
Lg

≤ 1+ ε̃ holds (Hypothesis 1.9) for ε sufficiently small

(depending on n and Γ), we show there is a Lipschitz bound for JacF (p) depending only
on the dimension n, the fundamental groupΓ and the lower bound−Λ2 for the sectional
curvatures of M .

3.3. Finiteness. We now give a sketch of the proof of Theorem 1.6, which states
that finitely many closed geodesics determine the full marked length spectrum approx-
imately. The basic idea is to start by covering the unit tangent bundle T 1M with finitely
many sufficiently small “flow boxes", that is, sets obtained by flowing local transversals
for some small fixed time interval (0,δ). On the one hand, any periodic orbit of the flow
that visits each of these boxes at most once is short, i.e., has period at most δ times
the total number of boxes. On the other hand, any periodic orbit that is long, i.e., of
length more than δ times the number of boxes, must return to at least one of the boxes
more than once before it closes up. In other words, long periodic orbits contain shorter
almost-periodic segments. By the Anosov closing lemma, these are in turn shadowed
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by periodic orbits. This allows us to approximate the lengths of long closed geodesics
with sums of lengths of short ones. We then use a Hölder continuous orbit equivalence
F : T 1M → T 1N to argue that similar approximations hold for the corresponding closed
geodesics in N . From this, we are able to estimate the ratio of Lg (γ)/Lg0 (γ) for all long
geodesics γ given our assumed estimate holds for short ones (Hypothesis 1.5).

However, considerable technical difficulties arise in making some of the standard re-
sults from the theory of Anosov flows effective in geometric terms. Since these results
are stated so generally, they contain a multitude of constants which depend on the given
flow in arguably mysterious ways. We illustrate this by briefly mentioning one of sev-
eral instances where such a difficulty occurs, namely, the well-known fact that a con-
tinuous orbit equivalence of Anosov flows is Hölder continuous [50, Theorem 19.1.5].
While the proof in [50] shows the Hölder exponent depends only on the exponential ex-
pansion/contraction rates of the flow, which in our geometric setting are determined
entirely by the sectional curvature bounds −λ2 and −Λ2, the dependence of the mul-
tiplicative constant on the given flow is far less transparent. Indeed, the proof in [50]
uses the fact that the starting orbit equivalence is uniformly continuous, and the final
estimate ends up depending on this initial modulus of continuity. As such, to ensure
the constants C and α in the conclusion of Theorem 1.6 do not depend on the partic-
ular metrics g and g0, we take great care to refine the statements of several standard
dynamical facts to this geometric setting.
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