We consider a hyperbolic toral automorphism and its -small perturbation . It is well-known that is Anosov and topologically conjugate to , but a conjugacy is only Hölder continuous in general. We discuss conditions for smoothness of , such as conjugacy of the periodic data of and , coincidence of their Lyapunov exponents, and weaker regularity of , and we summarize questions, results, and techniques in this area. Then we introduce our new results: if is weakly differentiable then it is , and if is also weakly irreducible then is .
@article{MRR_2022__3__57_0, author = {Boris Kalinin and Victoria Sadovskaya and Zhenqi Jenny Wang}, title = {Local rigidity for hyperbolic toral automorphisms}, journal = {Mathematics Research Reports}, pages = {57--68}, publisher = {MathOA foundation}, volume = {3}, year = {2022}, doi = {10.5802/mrr.13}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.13/} }
TY - JOUR AU - Boris Kalinin AU - Victoria Sadovskaya AU - Zhenqi Jenny Wang TI - Local rigidity for hyperbolic toral automorphisms JO - Mathematics Research Reports PY - 2022 SP - 57 EP - 68 VL - 3 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.13/ DO - 10.5802/mrr.13 LA - en ID - MRR_2022__3__57_0 ER -
%0 Journal Article %A Boris Kalinin %A Victoria Sadovskaya %A Zhenqi Jenny Wang %T Local rigidity for hyperbolic toral automorphisms %J Mathematics Research Reports %D 2022 %P 57-68 %V 3 %I MathOA foundation %U https://mrr.centre-mersenne.org/articles/10.5802/mrr.13/ %R 10.5802/mrr.13 %G en %F MRR_2022__3__57_0
Boris Kalinin; Victoria Sadovskaya; Zhenqi Jenny Wang. Local rigidity for hyperbolic toral automorphisms. Mathematics Research Reports, Volume 3 (2022), pp. 57-68. doi : 10.5802/mrr.13. https://mrr.centre-mersenne.org/articles/10.5802/mrr.13/
[1] Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Mathematics, no. 90, American Mathematical Society, Providence, RI, 1969
[2] Measurable rigidity of the cohomological equation for linear cocycles over hyperbolic systems, Israel Journal of Mathematics, Volume 227 (2018) no. 1, pp. 27-61 | DOI | MR | Zbl
[3] Local rigidity of partially hyperbolic actions. I. KAM method and actions on the torus, Annals of Mathematics, Volume 172 (2010), pp. 1805-1858 | DOI | MR | Zbl
[4] Invariants for smooth conjugacy of hyperbolic dynamical systems II, Comm. Math. Phys., Volume 109 (1987), pp. 368-378 | DOI | MR | Zbl
[5] Smooth conjugacy and SRB measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys., Volume 150 (1992), pp. 289-320 | DOI | Zbl
[6] Rigidity of higher-dimensional conformal Anosov systems, Ergodic Theory Dynam. Systems, Volume 22 (2002) no. 6, pp. 1845-1870 | DOI | MR | Zbl
[7] Further rigidity properties of conformal Anosov systems, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 5, pp. 1425-1441 | DOI | MR | Zbl
[8] Invariants for smooth conjugacy of hyperbolic dynamical systems IV, Comm. Math. Phys., Volume 116 (1988), pp. 185-192 | DOI | MR | Zbl
[9] Local Lyapunov spectrum rigidity of nilmanifold automorphisms, J. Modern Dynamics, Volume 17 (2021), pp. 65-109 | DOI | MR | Zbl
[10] Smooth conjugacy of Anosov diffeomorphisms on higher dimensional tori, J. Modern Dynamics, Volume 2 (2008) no. 4, pp. 645-700 | DOI | MR | Zbl
[11] Bootstrap for local rigidity of Anosov automorphisms of the 3-torus, Comm. Math. Phys., Volume 352 (2017) no. 2, pp. 439-455 | DOI | MR | Zbl
[12] -differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus, DCDS-A, Volume 22 (2008) no. 1/2, pp. 183-200 | MR
[13] Local rigidity for Anosov automorphisms, Math. Research Letters, Volume 18 (2011) no. 5, pp. 843-858 | DOI | MR | Zbl
[14] Local rigidity of Lyapunov spectrum for toral automorphisms, Israel J. Math., Volume 238 (2020), pp. 389-403 | DOI | MR | Zbl
[15] Smooth rigidity for very non-algebraic Anosov diffeomorphisms of codimension one, Preprint
[16] A regularity lemma for functions of several variables, Revista Matemática Iberoamericana, Volume 4 (1988) no. 2, pp. 187-193 | DOI | MR | Zbl
[17] Livšic theorem for matrix cocycles, Annals of Mathematics, Volume 173 (2011) no. 2, pp. 1025-1042 | DOI | MR | Zbl
[18] On local and global rigidity of quasiconformal Anosov diffeomorphisms, J. Institute of Mathematics of Jussieu, Volume 2 (2003) no. 4, pp. 567-582 | DOI | Zbl
[19] On Anosov diffeomorphisms with asymptotically conformal periodic data, Ergodic Theory Dynam. Systems, Volume 29 (2009), pp. 117-136 | DOI | MR | Zbl
[20] Linear cocycles over hyperbolic systems and criteria of conformality, J. Modern Dynamics, Volume 4 (2010) no. 3, pp. 419-441 | DOI | MR | Zbl
[21] Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata, Volume 167 (2013) no. 1, pp. 167-188 | DOI | MR | Zbl
[22] Smooth local rigidity for hyperbolic toral automorphisms, Preprint
[23] Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Etudes Sci. Publ. Math., Volume 59 (1984), pp. 163-188 | DOI | Numdam | Zbl
[24] Cohomology of dynamical systems, Math. USSR Izvestija, Volume 6 (1972), pp. 1278-1301 | DOI | MR
[25] The Livšic periodic point theorem for non-Abelian cocycles, Ergodic Theory Dynam. Systems, Volume 19 (1999) no. 3, pp. 687-701 | DOI | MR | Zbl
[26] The Livšic cocycle equation for compact Lie group extensions of hyperbolic systems, J. London Math. Soc., Volume 56 (1997) no. 2, pp. 405-416 | DOI | Zbl
[27] Lectures on partial hyperbolicity and stable ergodicity, EMS, Zurich, 2004 | DOI
[28] Livšic theorems for connected Lie groups, Trans. Amer. Math. Soc., Volume 353 (2001) no. 7, pp. 2879-2895 | DOI | Zbl
[29] On uniformly quasiconformal Anosov system, Math. Research Letters, Volume 12 (2005) no. 3, pp. 425-441 | DOI | MR | Zbl
[30] Cohomology of GL(2,)-valued cocycles over hyperbolic systems, DCDS-A, Volume 33 (2013) no. 5, pp. 2085-2104 | DOI | MR
[31] Cohomology of fiber bunched cocycles over hyperbolic systems, Ergodic Theory Dynam. Systems, Volume 35 (2015) no. 8, pp. 2669-2688 | DOI | MR | Zbl
[32] Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Advances in Math., Volume 355 (2019), p. 106764 | DOI | MR | Zbl
[33] Remarks on Livšic theory for non-Abelian cocycles, Ergodic Theory Dynam. Systems, Volume 19 (1999) no. 3, pp. 703-721 | DOI | Zbl
[34] Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory, Volume 4 (1970), pp. 327-333 | DOI | MR | Zbl
[35] Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 4267-4282 | DOI | MR | Zbl
Cited by Sources: