We report on some recent progress on the ergodicity of the frame flow of negatively-curved Riemannian manifolds. We explain the new ideas leading to ergodicity for nearly -pinched manifolds and give perspectives for future work.
@article{MRR_2022__3__21_0, author = {Mihajlo Ceki\'c and Thibault Lefeuvre and Andrei Moroianu and Uwe Semmelmann}, title = {Towards {Brin{\textquoteright}s} conjecture on frame flow ergodicity: new progress and perspectives}, journal = {Mathematics Research Reports}, pages = {21--34}, publisher = {MathOA foundation}, volume = {3}, year = {2022}, doi = {10.5802/mrr.11}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.11/} }
TY - JOUR AU - Mihajlo Cekić AU - Thibault Lefeuvre AU - Andrei Moroianu AU - Uwe Semmelmann TI - Towards Brin’s conjecture on frame flow ergodicity: new progress and perspectives JO - Mathematics Research Reports PY - 2022 SP - 21 EP - 34 VL - 3 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.11/ DO - 10.5802/mrr.11 LA - en ID - MRR_2022__3__21_0 ER -
%0 Journal Article %A Mihajlo Cekić %A Thibault Lefeuvre %A Andrei Moroianu %A Uwe Semmelmann %T Towards Brin’s conjecture on frame flow ergodicity: new progress and perspectives %J Mathematics Research Reports %D 2022 %P 21-34 %V 3 %I MathOA foundation %U https://mrr.centre-mersenne.org/articles/10.5802/mrr.11/ %R 10.5802/mrr.11 %G en %F MRR_2022__3__21_0
Mihajlo Cekić; Thibault Lefeuvre; Andrei Moroianu; Uwe Semmelmann. Towards Brin’s conjecture on frame flow ergodicity: new progress and perspectives. Mathematics Research Reports, Volume 3 (2022), pp. 21-34. doi : 10.5802/mrr.11. https://mrr.centre-mersenne.org/articles/10.5802/mrr.11/
[1] Vector fields on spheres, Ann. of Math. (2), Volume 75 (1962), pp. 603-632 https://doi-org.revues.math.u-psud.fr/10.2307/1970213 | DOI | MR
[2] Existence and uniqueness theorems for the solution of an inverse problem for the transfer equation, Sibirsk. Mat. Zh., Volume 27 (1986) no. 6, pp. 3-20 | MR
[3] Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., Volume 90 (1967), p. 209 | MR
[4] Generalized vector cross products and Killing forms on negatively curved manifolds, Geom. Dedicata, Volume 205 (2020), pp. 113-127 | DOI | MR | Zbl
[5] Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), Volume 14 (1960), pp. 151-159 | Numdam | MR | Zbl
[6] The topology of group extensions of -systems, Mat. Zametki, Volume 18 (1975) no. 3, pp. 453-465 | MR
[7] Ergodic theory of frame flows, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980) (Progr. Math.), Volume 21, Birkhäuser, Boston, Mass., 1982, pp. 163-183 | DOI | MR | Zbl
[8] On the ergodicity of frame flows, Invent. Math., Volume 60 (1980) no. 1, pp. 1-7 https://doi-org.revues.math.u-psud.fr/10.1007/BF01389897 | DOI | MR | Zbl
[9] Frame flows on manifolds with pinched negative curvature, Compositio Math., Volume 52 (1984) no. 3, pp. 275-297 | Numdam | MR | Zbl
[10] Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., Volume 38 (1974), pp. 170-212 | MR | Zbl
[11] Stable ergodicity and frame flows, Geom. Dedicata, Volume 98 (2003), pp. 189-210 https://doi-org.revues.math.u-psud.fr/10.1023/A:1024057924334 | DOI | MR | Zbl
[12] On the ergodicity of partially hyperbolic systems, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 451-489 | DOI | MR | Zbl
[13] -structures on spheres, Proc. London Math. Soc. (3), Volume 93 (2006) no. 3, pp. 791-816 https://doi-org.revues.math.u-psud.fr/10.1017/S0024611506015966 | DOI | MR | Zbl
[14] The Holonomy Inverse Problem (2021) | arXiv
[15] On the ergodicity of the frame flow on even-dimensional manifolds (2021) | arXiv
[16] Spectral rigidity of a compact negatively curved manifold, Topology, Volume 37 (1998) no. 6, pp. 1265-1273 https://doi-org.revues.math.u-psud.fr/10.1016/S0040-9383(97)00086-4 | DOI | MR | Zbl
[17] On mixing properties of compact group extensions of hyperbolic systems, Israel J. Math., Volume 130 (2002), pp. 157-205 | DOI | MR | Zbl
[18] Spectral theory of the frame flow on hyperbolic 3-manifolds, Ann. Henri Poincaré, Volume 22 (2021) no. 11, pp. 3565-3617 | DOI | MR | Zbl
[19] The X-ray transform for connections in negative curvature, Comm. Math. Phys., Volume 343 (2016) no. 1, pp. 83-127 https://doi-org.revues.math.u-psud.fr/10.1007/s00220-015-2510-x | DOI | MR | Zbl
[20] Partially hyperbolic dynamical systems, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 1-55 | DOI | MR | Zbl
[21] Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc., Volume 39 (1936) no. 2, pp. 299-314 | DOI | MR | Zbl
[22] Isometric extensions of Anosov flows via microlocal analysis (2021) | arXiv
[23] -structures on spheres, Trans. Amer. Math. Soc., Volume 157 (1971), pp. 311-327 | DOI | MR | Zbl
[24] On contact Anosov flows, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1275-1312 https://doi-org.revues.math.u-psud.fr/10.4007/annals.2004.159.1275 | DOI | MR | Zbl
[25] Exponential decay of correlation coefficients for geodesic flows, Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, Calif., 1984) (Math. Sci. Res. Inst. Publ.), Volume 6, Springer, New York, 1987, pp. 163-181 https://doi-org.revues.math.u-psud.fr/10.1007/978-1-4612-4722-7_6 | DOI | MR | Zbl
[26] Inverse kinematic problem of seismic on the plane, Akad. Nauk. SSSR, Volume 6 (1975), pp. 243-252
[27] On a problem of reconstructing Riemannian metrics, Sibirsk. Mat. Zh., Volume 22 (1981) no. 3, p. 119-135, 237 | MR
[28] Tensor tomography on simple surfaces, Invent. Math., Volume 193 (2013) no. 1, pp. 229-247 https://doi-org.revues.math.u-psud.fr/10.1007/s00222-012-0432-1 | DOI | MR | Zbl
[29] Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004, vi+122 pages | DOI | MR
[30] Integral geometry of tensor fields on a manifold of negative curvature, Sibirsk. Mat. Zh., Volume 29 (1988) no. 3, p. 114-130, 221 | DOI | MR | Zbl
[31] Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc., Volume 2 (2000) no. 1, pp. 1-52 | DOI | MR | Zbl
[32] Integral geometry of tensor fields, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994, 271 pages | DOI | MR
[33] Decay of correlations for certain isometric extensions of Anosov flows, Ergodic Theory Dynam. Systems (2022) (51 pages) | DOI
[34] Smooth mixing Anosov flows in dimension three are exponential mixing (2020) (to appear in Ann. of Math.) | arXiv
[35] Polynomial maps from spheres to spheres, Invent. Math., Volume 5 (1968), pp. 163-168 | DOI | MR | Zbl
Cited by Sources: