A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups
Mathematics Research Reports, Volume 1 (2020) , pp. 5-14.

The main result of this note is the pointwise convergence of spherical averages for measure-preserving actions of Fuchsian groups. The proof relies on a new self-inverse Markovian symbolic coding for Fuchsian groups and the method of Markov operators.

Received: 2018-11-17
Accepted: 2018-12-28
Published online: 2020-06-30
DOI: https://doi.org/10.5802/mrr.3
Classification: 20H10,  22D40,  37A30
Keywords: Ergodic theorem, Fuchsian group, Markov coding, Markov operator, spherical averages.
@article{MRR_2020__1__5_0,
     author = {Alexander I.  Bufetov and Alexey Klimenko and Caroline Series},
     title = {A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups},
     journal = {Mathematics Research Reports},
     publisher = {MathOA foundation},
     volume = {1},
     year = {2020},
     pages = {5-14},
     doi = {10.5802/mrr.3},
     language = {en},
     url = {mrr.centre-mersenne.org/item/MRR_2020__1__5_0/}
}
Alexander I.  Bufetov; Alexey Klimenko; Caroline Series. A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups. Mathematics Research Reports, Volume 1 (2020) , pp. 5-14. doi : 10.5802/mrr.3. https://mrr.centre-mersenne.org/item/MRR_2020__1__5_0/

[1] Joan S. Birman; Caroline Series Dehn’s algorithm revisited, with applications to simple curves on surfaces, Combinatorial group theory and topology (Alta, Utah, 1984) (Ann. of Math. Stud.) Volume 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 451-478 | Article | MR 895628 | Zbl 0624.20033

[2] Lewis Bowen; Alexander Bufetov; Olga Romaskevich Mean convergence of Markovian spherical averages for measure-preserving actions of the free group, Geom. Dedicata, Volume 181 (2016), pp. 293-306 | Article | MR 3475750 | Zbl 1355.37011

[3] Lewis Bowen; Amos Nevo Von Neumann and Birkhoff ergodic theorems for negatively curved groups, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 5, pp. 1113-1147 | Article | MR 3429477 | Zbl 1359.37007

[4] Rufus Bowen; Caroline Series Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 153-170 | Article | Numdam | MR 556585 | Zbl 0439.30033

[5] A. I. Bufetov Operator ergodic theorems for actions of free semigroups and groups, Funct. Anal. Appl, Volume 34 (2000) no. 4, pp. 239-251 | Article | MR 1818281 | Zbl 0983.22006

[6] Alexander I. Bufetov Markov averaging and ergodic theorems for several operators, Topology, ergodic theory, real algebraic geometry (Amer. Math. Soc. Transl. Ser. 2) Volume 202, Amer. Math. Soc., Providence, RI, 2001, pp. 39-50 | Article | MR 1819180 | Zbl 1002.47004

[7] Alexander I. Bufetov Convergence of spherical averages for actions of free groups, Ann. of Math. (2), Volume 155 (2002) no. 3, pp. 929-944 | Article | MR 1923970 | Zbl 1028.37001

[8] Alexander I. Bufetov; Mikhail Khristoforov; Alexey Klimenko Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups, Int. Math. Res. Not. IMRN (2012) no. 21, pp. 4797-4829 | Article | MR 2993436 | Zbl 1267.22003

[9] Alexander I. Bufetov; Alexey Klimenko On Markov operators and ergodic theorems for group actions, European J. Combin., Volume 33 (2012) no. 7, pp. 1427-1443 | Article | MR 2923460 | Zbl 1281.37004

[10] Alexander I. Bufetov; Alexey Klimenko; Caroline Series Convergence of spherical averages for actions of Fuchsian Groups (2018) (preprint) | arXiv:1805.11743

[11] Alexander I. Bufetov; Caroline Series A pointwise ergodic theorem for Fuchsian groups, Math. Proc. Cambridge Philos. Soc., Volume 151 (2011) no. 1, pp. 145-159 | Article | MR 2801319 | Zbl 1219.22008

[12] Koji Fujiwara; Amos Nevo Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, Volume 18 (1998) no. 4, pp. 843-858 | Article | MR 1645314 | Zbl 0919.22002

[13] R. I. Grigorchuk An ergodic theorem for actions of a free semigroup, Proc. Steklov Inst. Math., Volume 231 (2000) no. 4, pp. 113-127 | MR 1841754 | Zbl 1172.37303

[14] Amos Nevo Pointwise ergodic theorems for actions of groups, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 871-982 | Article | MR 2186253 | Zbl 1130.37310

[15] Mark Pollicott; Richard Sharp Ergodic theorems for actions of hyperbolic groups, Proc. Amer. Math. Soc., Volume 141 (2013) no. 5, pp. 1749-1757 | Article | MR 3020860 | Zbl 1266.28008

[16] Gian-Carlo Rota An “Alternierende Verfahren” for general positive operators, Bull. Amer. Math. Soc., Volume 68 (1962), pp. 95-102 | Article | MR 133847 | Zbl 0116.10403

[17] Caroline Series The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory Dynam. Systems, Volume 1 (1981) no. 3, pp. 337-360 | Article | MR 662473 | Zbl 0483.30029

[18] Caroline Series Geometrical methods of symbolic coding, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (Oxford Sci. Publ.), Oxford Univ. Press, New York, 1991, pp. 125-151 | MR 1130175 | Zbl 0752.30026

[19] Matthew Wroten The Eventual Gaussian Distribution for Self-Intersection Numbers on Closed Surfaces (2014) (preprint) | arXiv:1405.7951