The main result of this note is the pointwise convergence of spherical averages for measure-preserving actions of Fuchsian groups. The proof relies on a new self-inverse Markovian symbolic coding for Fuchsian groups and the method of Markov operators.
@article{MRR_2020__1__5_0, author = {Alexander I. Bufetov and Alexey Klimenko and Caroline Series}, title = {A symmetric {Markov} coding and the ergodic theorem for actions of {Fuchsian} {Groups}}, journal = {Mathematics Research Reports}, pages = {5--14}, publisher = {MathOA foundation}, volume = {1}, year = {2020}, doi = {10.5802/mrr.3}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.3/} }
TY - JOUR AU - Alexander I. Bufetov AU - Alexey Klimenko AU - Caroline Series TI - A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups JO - Mathematics Research Reports PY - 2020 SP - 5 EP - 14 VL - 1 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.3/ DO - 10.5802/mrr.3 LA - en ID - MRR_2020__1__5_0 ER -
%0 Journal Article %A Alexander I. Bufetov %A Alexey Klimenko %A Caroline Series %T A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups %J Mathematics Research Reports %D 2020 %P 5-14 %V 1 %I MathOA foundation %U https://mrr.centre-mersenne.org/articles/10.5802/mrr.3/ %R 10.5802/mrr.3 %G en %F MRR_2020__1__5_0
Alexander I. Bufetov; Alexey Klimenko; Caroline Series. A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups. Mathematics Research Reports, Volume 1 (2020), pp. 5-14. doi : 10.5802/mrr.3. https://mrr.centre-mersenne.org/articles/10.5802/mrr.3/
[1] Dehn’s algorithm revisited, with applications to simple curves on surfaces, Combinatorial group theory and topology (Alta, Utah, 1984) (Ann. of Math. Stud.), Volume 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 451-478 | DOI | MR | Zbl
[2] Mean convergence of Markovian spherical averages for measure-preserving actions of the free group, Geom. Dedicata, Volume 181 (2016), pp. 293-306 | DOI | MR | Zbl
[3] Von Neumann and Birkhoff ergodic theorems for negatively curved groups, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 5, pp. 1113-1147 | DOI | MR | Zbl
[4] Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 153-170 | DOI | Numdam | MR | Zbl
[5] Operator ergodic theorems for actions of free semigroups and groups, Funct. Anal. Appl, Volume 34 (2000) no. 4, pp. 239-251 | DOI | MR | Zbl
[6] Markov averaging and ergodic theorems for several operators, Topology, ergodic theory, real algebraic geometry (Amer. Math. Soc. Transl. Ser. 2), Volume 202, Amer. Math. Soc., Providence, RI, 2001, pp. 39-50 | DOI | MR | Zbl
[7] Convergence of spherical averages for actions of free groups, Ann. of Math. (2), Volume 155 (2002) no. 3, pp. 929-944 | DOI | MR | Zbl
[8] Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups, Int. Math. Res. Not. IMRN (2012) no. 21, pp. 4797-4829 | DOI | MR | Zbl
[9] On Markov operators and ergodic theorems for group actions, European J. Combin., Volume 33 (2012) no. 7, pp. 1427-1443 | DOI | MR | Zbl
[10] Convergence of spherical averages for actions of Fuchsian Groups (2018) (preprint) | arXiv
[11] A pointwise ergodic theorem for Fuchsian groups, Math. Proc. Cambridge Philos. Soc., Volume 151 (2011) no. 1, pp. 145-159 | DOI | MR | Zbl
[12] Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, Volume 18 (1998) no. 4, pp. 843-858 | DOI | MR | Zbl
[13] An ergodic theorem for actions of a free semigroup, Proc. Steklov Inst. Math., Volume 231 (2000) no. 4, pp. 113-127 | MR | Zbl
[14] Pointwise ergodic theorems for actions of groups, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 871-982 | DOI | MR | Zbl
[15] Ergodic theorems for actions of hyperbolic groups, Proc. Amer. Math. Soc., Volume 141 (2013) no. 5, pp. 1749-1757 | DOI | MR | Zbl
[16] An “Alternierende Verfahren” for general positive operators, Bull. Amer. Math. Soc., Volume 68 (1962), pp. 95-102 | DOI | MR | Zbl
[17] The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory Dynam. Systems, Volume 1 (1981) no. 3, pp. 337-360 | DOI | MR | Zbl
[18] Geometrical methods of symbolic coding, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (Oxford Sci. Publ.), Oxford Univ. Press, New York, 1991, pp. 125-151 | MR | Zbl
[19] The Eventual Gaussian Distribution for Self-Intersection Numbers on Closed Surfaces (2014) (preprint) | arXiv
Cited by Sources: