Centralizers of hyperbolic and kinematic-expansive flows
Mathematics Research Reports, Volume 2 (2021) , pp. 21-44.

We show that generic C hyperbolic flows commute with no C -diffeomorphism other than a time-t map of the flow itself. Kinematic-expansivity, a substantial weakening of expansivity, implies that C 0 flows have quasidiscrete C 0 -centralizer, and additional conditions broader than transitivity then give discrete C 0 -centralizer. We also prove centralizer-rigidity: a diffeomorphism commuting with a generic hyperbolic flow is determined by its values on any open set.

Received:
Revised:
Published online:
DOI: https://doi.org/10.5802/mrr.8
Classification: 37D20,  37C10,  37C20
Keywords: Dynamical systems; flows; commuting; expansive; hyperbolic
@article{MRR_2021__2__21_0,
     author = {Lennard Bakker and Todd Fisher and Boris Hasselblatt},
     title = {Centralizers of hyperbolic and kinematic-expansive flows},
     journal = {Mathematics Research Reports},
     pages = {21--44},
     publisher = {MathOA foundation},
     volume = {2},
     year = {2021},
     doi = {10.5802/mrr.8},
     language = {en},
     url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.8/}
}
Lennard Bakker; Todd Fisher; Boris Hasselblatt. Centralizers of hyperbolic and kinematic-expansive flows. Mathematics Research Reports, Volume 2 (2021) , pp. 21-44. doi : 10.5802/mrr.8. https://mrr.centre-mersenne.org/articles/10.5802/mrr.8/

[1] Boyd Anderson Diffeomorphisms with discrete centralizer, Topology, Volume 15 (1976) no. 2, pp. 143-147 | Article | MR 0402821 | Zbl 0338.58005

[2] Alfonso Artigue Kinematic expansive flows, Ergodic Theory Dynam. Systems, Volume 36 (2016) no. 2, pp. 390-421 | Article | MR 3503030 | Zbl 1355.37040

[3] Lennard Bakker; Todd Fisher Open sets of diffeomorphisms with trivial centralizer in the C 1 topology, Nonlinearity, Volume 27 (2014) no. 12, pp. 2869-2885 | Article | MR 3291134 | Zbl 1351.37079

[4] Christian Bonatti; Sylvain Crovisier; Gioia M. Vago; Amie Wilkinson Local density of diffeomorphisms with large centralizers, Ann. Sci. Éc. Norm. Supér. (4), Volume 41 (2008) no. 6, pp. 925-954 | Article | Numdam | MR 2504109 | Zbl 1163.58003

[5] Christian Bonatti; Sylvain Crovisier; Amie Wilkinson C 1 -generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn., Volume 2 (2008) no. 2, pp. 359-373 | Article | MR 2383272 | Zbl 1149.37017

[6] Christian Bonatti; Sylvain Crovisier; Amie Wilkinson The centralizer of a C 1 -generic diffeomorphism is trivial, Electron. Res. Announc. Math. Sci., Volume 15 (2008), pp. 33-43 | MR 2407535 | Zbl 1149.37012

[7] Christian Bonatti; Sylvain Crovisier; Amie Wilkinson The C 1 generic diffeomorphism has trivial centralizer, Publ. Math. Inst. Hautes Études Sci. (2009) no. 109, pp. 185-244 | Article | Numdam | MR 2511588 | Zbl 1177.37025

[8] Wescley Bonomo; Jorge Rocha; Paulo Varandas The centralizer of Komuro-expansive flows and expansive d actions, Math. Z., Volume 289 (2018) no. 3-4, pp. 1059-1088 | Article | MR 3830239 | Zbl 1397.37020

[9] Wescley Bonomo; Paulo Varandas A criterion for the triviality of the centralizer for vector fields and applications, J. Differential Equations, Volume 267 (2019) no. 3, pp. 1748-1766 | Article | MR 3945616 | Zbl 1421.37008

[10] Rufus Bowen; Peter Walters Expansive one-parameter flows, Journal of Differential Equations, Volume 12 (1972), pp. 180-193 | Article | MR 341451 | Zbl 0242.54041

[11] Todd Fisher Trivial centralizers for Axiom A diffeomorphisms, Nonlinearity, Volume 21 (2008) no. 11, pp. 2505-2517 | Article | MR 2448228 | Zbl 1173.37013

[12] Todd Fisher; Boris Hasselblatt Hyperbolic flows, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2019 (http://www.ms.u-tokyo.ac.jp/lecturenotes16-hasselblatt.pdf) | Zbl 1430.37002

[13] Todd Fisher; Boris Hasselblatt Accessibility and centralizers for partially hyperbolic flows, Ergodic Theory and Dynamical Systems, Volume 42 (2022) (to appear)

[14] Etienne Ghys Flots d’Anosov dont les feuilletages stables sont différentiables, Annales Scientifiques de l’Ecole Normale Supérieure. Quatrième Série, Volume 20 (1987) no. 2, pp. 251-270 | Article | Zbl 0663.58025

[15] A. A. Gura Separating diffeomorphisms of a torus, Mat. Zametki, Volume 18 (1975) no. 1, pp. 41-49 | MR 0402822 | Zbl 0311.58009

[16] A. A. Gura The horocycle flow on a surface of negative curvature is separating, Mat. Zametki, Volume 36 (1984) no. 2, pp. 279-284 | MR 759440

[17] Anatole Katok; Viorel Niţică Rigidity in higher rank abelian group actions. Volume I, Cambridge Tracts in Mathematics, 185, Cambridge University Press, Cambridge, 2011 | Article | MR 2798364 | Zbl 1232.37003

[18] Anatole Katok; Ralf J. Spatzier First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. (1994) no. 79, pp. 131-156 | Article | Numdam | MR 1307298 | Zbl 0819.58027

[19] Anatole Katok; Ralf J. Spatzier Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akademiya Nauk, Volume 216 (1997) no. Din. Sist. i Smezhnye Vopr., pp. 292-319

[20] Nancy Kopell Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 165-184 | MR 0270396 | Zbl 0225.57020

[21] Martin Leguil; Davi Obata; Bruno Santiago On the centralizer of vector fields: criteria of triviality and genericity results, Mathematische Zeitschrift, Volume 297 (2021), pp. 283-337 | Article | MR 4204693 | Zbl 1459.37021

[22] Shigenori Matsumoto Kinematic expansive suspensions of irrational rotations on the circle, Hokkaido Math. J., Volume 46 (2017) no. 3, pp. 473-485 | Article | MR 3720338 | Zbl 1379.37083

[23] Davi Joel dos Anjos Obata Symmetries of vector fields: the diffeomorphism centralizer (arXiv:1903.05883, see also https://www.imo.universite-paris-saclay.fr/~obata/Tese-Ufrj-Davi.pdf)

[24] Masatoshi Oka Expansive flows and their centralizers, Nagoya Math. J., Volume 64 (1976), pp. 1-15 | MR 0425932 | Zbl 0362.58013

[25] J. Palis Rigidity of the centralizers of diffeomorphisms and structural stability of suspended foliations, Differential topology, foliations and Gelfand-Fuks cohomology (Proc. Sympos., Pontifícia Univ. Católica, Rio de Janeiro, 1976) (Lecture Notes in Math.), Volume 652, Springer, Berlin, 1978, pp. 114-121 | Article | MR 505654 | Zbl 0382.57013

[26] Jacob Palis; Jean-Christophe Yoccoz Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4), Volume 22 (1989) no. 1, pp. 81-98 | Article | Numdam | MR 985855 | Zbl 0709.58022

[27] Jorge Rocha A note on the C 0 -centralizer of an open class of bidimensional Anosov diffeomorphisms, Aequationes Math., Volume 76 (2008) no. 1-2, pp. 105-111 | Article | MR 2443464 | Zbl 1153.37015

[28] Jorge Rocha; Paulo Varandas The centralizer of C r -generic diffeomorphisms at hyperbolic basic sets is trivial, Proc. Amer. Math. Soc., Volume 146 (2018) no. 1, pp. 247-260 | Article | MR 3723137 | Zbl 1379.37067

[29] Federico Rodriguez Hertz; Zhiren Wang Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math., Volume 198 (2014) no. 1, pp. 165-209 | Article | MR 3260859 | Zbl 1312.37028

[30] Paulo Roberto Sad Centralizers of vector fields, Topology, Volume 18 (1979) no. 2, pp. 97-104 | Article | MR 544150 | Zbl 0415.58016

[31] George R. Sell Smooth linearization near a fixed point, Amer. J. Math., Volume 107 (1985) no. 5, pp. 1035-1091 | Article | MR 805804 | Zbl 0574.34025

[32] Steve Smale Mathematical problems for the next century, Math. Intelligencer, Volume 20 (1998) no. 2, pp. 7-15 | Article | MR 1631413 | Zbl 0947.01011

[33] Peter Walters Homeomorphisms with discrete centralizers and ergodic properties, Math. Systems Theory, Volume 4 (1970), pp. 322-326 | Article | MR 0414831 | Zbl 0207.22702