We report on recent work on the scaling asymptotics of the equivariant components of Poisson and Szegö kernels on the Grauert tube boundaries associated to a real-analytic Riemannian manifold acted upon by a compact Lie group. Building largely on techniques of Zelditch and Chang and Rabinowitz, we describe the asymptotic concentration along the zero locus of the moment map of the equivariant eigenfunctions of a Toeplitz operator associated to the homogeneous geodesic flow and of the complexified equivariant eigenfunctions of the Laplacian. We also digress on some applications.
Revised:
Published online:
Keywords: Riemannian manifold, geodesic flow, Grauert tubes, complexified eigenfunctions, Poisson-wave operators, CR structure, Szegő kernel, Hamiltonian Lie group actions, moment maps, isotypical components, scaling asymptotics
Simone Gallivanone 1; Roberto Paoletti 1

@article{MRR_2025__6__51_0, author = {Simone Gallivanone and Roberto Paoletti}, title = {Equivariant asymptotics on {Grauert} tubes}, journal = {Mathematics Research Reports}, pages = {51--61}, publisher = {MathOA foundation}, volume = {6}, year = {2025}, doi = {10.5802/mrr.23}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.23/} }
TY - JOUR AU - Simone Gallivanone AU - Roberto Paoletti TI - Equivariant asymptotics on Grauert tubes JO - Mathematics Research Reports PY - 2025 SP - 51 EP - 61 VL - 6 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.23/ DO - 10.5802/mrr.23 LA - en ID - MRR_2025__6__51_0 ER -
Simone Gallivanone; Roberto Paoletti. Equivariant asymptotics on Grauert tubes. Mathematics Research Reports, Volume 6 (2025), pp. 51-61. doi : 10.5802/mrr.23. https://mrr.centre-mersenne.org/articles/10.5802/mrr.23/
[1] Convergence dans le domaine complexe des séries de fonctions propres, C. R. Math., Volume 287 (1978) no. 13, p. A855-A856 | Zbl
[2] Sur la singularité des noyaux de Bergman et de Szegő, Proceedings of the conference on partial differential equations (Astérisque), Volume 34–35, Société Mathématique de France, 1976, pp. 123-164 | Zbl
[3] Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv., Volume 33 (1959), pp. 132-160 | MR | Zbl
[4] Szegő kernel asymptotics and concentration of Husimi distributions of eigenfunctions (2022) | arXiv
[5] Scaling asymptotics for Szegő kernels on Grauert tubes, J. Geom. Anal., Volume 33 (2023) no. 2, 60 | DOI | MR | Zbl
[6] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | DOI | MR | Zbl
[7] Harmonic analysis in phase space, Princeton University Press, 1989 | DOI | MR | Zbl
[8] Estimates for the complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., Volume 27 (1974), pp. 429-522 | MR | Zbl
[9] Parametrices and estimates for the complex on strongly pseudoconvex boundaries, Bull. Am. Math. Soc., Volume 80 (1974), pp. 253-258 | DOI | MR | Zbl
[10] Equivariant scaling asymptotics for Poisson and Szegő kernels on Grauert tube boundaries (2025) | arXiv
[11] Microlocal analysis for differential operators, London Mathematical Society Lecture Note Series, 196, Cambridge University Press, 1994 | DOI | MR | Zbl
[12] Paley-Wiener on manifolds, The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994) (Proceedings of Symposia in Pure Mathematics), Volume 60, American Mathematical Society, 1997, pp. 85-91 | Zbl
[13] Grauert tubes and the homogeneous Monge-Ampère equation, J. Differ. Geom., Volume 34 (1991) no. 2, pp. 561-570 | DOI | Zbl
[14] Grauert tubes and the homogeneous Monge-Ampère equation. II, J. Differ. Geom., Volume 35 (1992) no. 3, pp. 627-641 | DOI | MR | Zbl
[15] A proof of a result of L. Boutet de Monvel, Algebraic and analytic microlocal analysis (Springer Proceedings in Mathematics & Statistics), Volume 269, Springer, 2018, pp. 541-574 | DOI | Zbl
[16] Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic Riemannian manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 29 (1996) no. 6, pp. 669-736 | DOI | Numdam | MR | Zbl
[17] Complex structures on the tangent bundle of Riemannian manifolds, Complex analysis and geometry (The University Series in Mathematics), Plenum Press, 1993, pp. 235-251 | DOI | Zbl
[18] Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds, Math. Ann., Volume 290 (1991) no. 4, pp. 689-712 | DOI | MR | Zbl
[19] On the Weyl law for Toeplitz operators, Asymptotic Anal., Volume 63 (2009) no. 1-2, pp. 85-99 | DOI | MR | Zbl
[20] Local trace formulae and scaling asymptotics in Toeplitz quantization, Int. J. Geom. Methods Mod. Phys., Volume 7 (2010) no. 3, pp. 379-403 | DOI | MR | Zbl
[21] Spectral and eigenfunction asymptotics in Toeplitz quantization, Complex and symplectic geometry (Springer INdAM Series), Volume 21, Springer, 2017, pp. 179-190 | DOI | Zbl
[22] Local scaling asymptotics for the Gutzwiller trace formula in Berezin-Toeplitz quantization, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1548-1596 | DOI | MR | Zbl
[23] Poisson and Szegő kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz), Boll. Unione Mat. Ital., Volume 17 (2024) no. 4, pp. 767-824 | DOI | MR | Zbl
[24] Monge-Ampère functions with large center, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) (Proceedings of Symposia in Pure Mathematics), Volume 52, Part 2, American Mathematical Society, 1991, pp. 435-447 | DOI | MR | Zbl
[25] Stein manifolds with compact symmetric center, Math. Ann., Volume 289 (1991) no. 3, pp. 355-382 | DOI | MR | Zbl
[26] Random polynomials of high degree and Levy concentration of measure, Asian J. Math., Volume 7 (2003) no. 4, pp. 627-646 | DOI | MR | Zbl
[27] Concerning the norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-138 | DOI | MR | Zbl
[28] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 210, Cambridge University Press, 2017 | DOI | MR | Zbl
[29] On the analytic continuation of the Poisson kernel, Manuscr. Math., Volume 144 (2014) no. 1–2, pp. 253-276 | DOI | MR | Zbl
[30] The Poisson transform on a compact real analytic Riemannian manifold, Monatsh. Math., Volume 178 (2015) no. 2, pp. 299-309 | DOI | MR | Zbl
[31] Complex structures on tangent bundles of Riemannian manifolds, Math. Ann., Volume 291 (1991) no. 3, pp. 409-428 | DOI | MR | Zbl
[32] Index and dynamics of quantized contact transformations, Ann. Inst. Fourier, Volume 47 (1997) no. 1, pp. 305-363 | DOI | Numdam | MR | Zbl
[33] Complex zeros of real ergodic eigenfunctions, Invent. Math., Volume 167 (2007) no. 2, pp. 419-443 | DOI | MR | Zbl
[34] Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I, Spectral geometry (Proceedings of Symposia in Pure Mathematics), Volume 84, American Mathematical Society, 2012, pp. 299-339 | DOI | Zbl
[35] Eigenfunctions and nodal sets, Geometry and topology (Surveys in Differential Geometry), Volume 18, International Press, 2013, pp. 237-308 | Zbl
[36] Ergodicity and intersections of nodal sets and geodesics on real analytic surfaces, J. Differ. Geom., Volume 96 (2014) no. 2, pp. 305-351 | DOI | MR | Zbl
[37] Eigenfunctions of the Laplacian on a Riemannian manifold, CBMS Regional Conference Series in Mathematics, 125, Conference Board of the Mathematical Sciences / American Mathematical Society, 2017 | DOI | MR | Zbl
[38] norms of Husimi distributions of eigenfunctions (2020) | arXiv | Zbl
[39] Pointwise Weyl law for partial Bergman kernels, Algebraic and analytic microlocal analysis (Springer Proceedings in Mathematics & Statistics), Volume 269, Springer, 2018, pp. 589-634 | DOI | Zbl
[40] Central limit theorem for spectral partial Bergman kernels, Geom. Topol., Volume 23 (2019) no. 4, pp. 1961-2004 | DOI | MR | Zbl
[41] Interface asymptotics of partial Bergman kernels around a critical level, Ark. Mat., Volume 57 (2019) no. 2, pp. 471-492 | DOI | MR | Zbl
Cited by Sources: