
Mr
r Mathematics

esearch
eports

r
r

Simone Gallivanone, Roberto Paoletti

Equivariant asymptotics on Grauert tubes

Volume 6 (2025), p. 51-61.

https://doi.org/10.5802/mrr.23

© The authors, 2025.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Mathematics Research Reports is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org
e-ISSN: 2772-9559

https://doi.org/10.5802/mrr.23
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
www.centre-mersenne.org


M   athematics esearch eportsr r
Volume 6 (2025), 51–61
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Abstract. We report on recent work on the scaling asymptotics of the
equivariant components of Poisson and Szegö kernels on the Grauert
tube boundaries associated to a real-analytic Riemannian manifold
acted upon by a compact Lie group. Building largely on techniques of
Zelditch and Chang and Rabinowitz, we describe the asymptotic con-
centration along the zero locus of the moment map of the equivariant
eigenfunctions of a Toeplitz operator associated to the homogeneous
geodesic flow and of the complexified equivariant eigenfunctions of
the Laplacian. We also digress on some applications.

1. Introduction

A d-dimensional compact real-analytic manifold M admits an essentially unique
complexification, that is, a complex manifold (M̃ , J ) (here J is the complex structure)
of complex dimension d , in which M sits as a totally real submanifold [3]; one calls M̃
the Bruhat–Whitney complexification of M . Furthermore, the choice of a real-analytic
Riemannian metric κ on M determines a unique real-analytic function ρ : M̃ → R with
the following properties ([13, 14, 17, 18, 31, 24, 25]):

(1) ρ ≥ 0 and ρ−1(0) = M ;
(2) ρ is strictly plurisubharmonic, from whichΩ := ı ∂∂ρ is a Kähler form, inducing

a Riemannian metric κ̂ :=Ω(·, J ·) on M̃ ;
(3) (M ,κ) is a Riemannian submanifold of (M̃ , κ̂);
(4)

p
ρ satisfies the complex homogeneous Monge–Ampère equation on M̃ \ M :

det

(
∂2pρ
∂zk∂z j

)
= 0.

An alternative perspective is to say that κ determines a unique complex structure Jad

(called adapted in [18]) on a neighbourhood of the zero section of the tangent bundle,
with the property that the parametrized leaves of the Riemannian foliation are holomor-
phic. We shall identify the tangent and cotangent bundles T M and T ∨M of M by means
of κ.

As shown in [18] and [16], the equivalence between these approaches is realized by
the so-called imaginary time exponential map of (M ,κ), which maps a tubular neigh-
bourhood of the zero section in T M to a tubular neighbourhood of M in M̃ , and is the
identity on M ; this map is (Jad, J )-holomorphic, and intertwines ρ with the square norm
function ∥ · ∥2. Furthermore, it is a symplectomorphism with respect to the canonical
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symplectic structureΩcan on the (co)tangent bundle andΩ on M̃ . In short, for any τ> 0
sufficiently small if T τM ⊂ T M is the locus where the norm is < τ and M̃τ := ρ−1

(
0,τ2

)⊆
M̃ , then the imaginary time exponential map is an isomorphism between the Kähler
manifolds

(
T τM , Jad,Ωcan

)
and

(
M̃τ, J ,Ω

)
.

We shall set τmax := supρ; then 0 < τmax ≤ +∞, and τmax < +∞ in the presence of
negative sectional curvatures [18].

For any τ ∈ (0,τmax], one calls M̃τ the Grauert tube of radius τ. If τ ∈ (0,τmax), by
construction M̃τ is a strictly pseudoconvex domain in M̃ . On its boundary X τ := ∂M̃τ

we have the following objects:

(1) a contact form ατ, given by the restriction of α :=ℑ(∂ρ);
(2) the Hardy space H(X τ) ⊆ L2(X τ) (we adopt the choice of volume form on X τ in

[23, §3.2.3]);
(3) the Szegö projector Πτ : L2(X τ) → H(X τ), and its distributional kernel Πτ(·, ·) ∈

D′(X τ×X τ) (everything that follows is based on the description in [2] ofΠτ as a
Fourier integral operator with a complex phase ψτ of positive type);

(4) the Hamiltonian vector field υpρ of
p
ρ with respect toΩ, and its restriction υτp

ρ
to X τ;

(5) the formally self-adjoint differential operator Dτp
ρ

:= ı υpρ ;

(6) the Toeplitz operator

(1.1) Dτp
ρ :=Πτ ◦Dτp

ρ ◦Πτ.

Remark 1.1. The flow Γτt : X τ → X τ of υpρ is intertwined by the imaginary time expo-
nential map with the homogeneous geodesic flow on the tangent bundle; for this reason,
we shall somewhat abusively refer to it as ‘the geodesic flow on X τ’.

The spectral analysis of Dτp
ρ

on H(X τ) was pioneered by Zelditch [34, 38] and may be

viewed heuristically as a counterpart in the complex domain of the spectral analysis of
the Laplacian on M ; compression withΠτ is necessary, since the flow of υτp

ρ
is generally

not CR-holomorphic.
Consider the distinct eigenvalues λτ1 < λτ2 < ·· · ↑ +∞ of Dτp

ρ
; for every j = 1,2, . . . let

Πτj : L2(X τ) → V τ
j be the orthogonal projector onto the eigenspace V τ

j ⊆ H(X τ) of λτj .

Since V τ
j is finite-dimensional, Πτj is smoothing, i.e., the distributional kernel Πτj (·, ·) ∈

C ∞(X τ× X τ). In the following, we shall simplify notation and write λ j = λτj , V j = V τ
j ,

thus leaving dependence on τ of spectral data implicit. The asymptotic distribution of
the λ j ’s and the local concentration of the corresponding eigenfunctions is probed by
smoothing operator kernels of the form

(1.2) Πτχ,λ :=∑
j
χ̂(λ−λ j )Πτj ,

where χ ∈C ∞
c (R) is of compact support and λ→+∞.

Smoothed spectral projectors as (1.2) (and its equivariant version (1.4) below) are
commonly studied in spectral theory (see, e.g., [11, 6] for pseudodifferential operators;
in the setting of Toeplitz operators, with an emphasis on local scaling asymptotics, see,
e.g., [19, 20, 21, 22, 34, 38, 39, 40, 41]).

In two remarkable papers, [5] and [4], building in particular on work of Zelditch ([33,
34, 35, 36, 37, 38]) and Folland and Stein ([8, 9]), Chang and Rabinowitz have recently
made groundbreaking progress in the study of the scaling asymptotics of (1.2), and con-
siderably clarified the analogy with the scaling asymptotics of the equivariant Szegö ker-
nels in the line bundle setting. Their construction has been reviewed and somewhat re-
fined in [23], where the focus was on the near-diagonal case. Here we report on work in
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progress extending the results of [23] to the equivariant context; in the action-free case,
our treatment includes the near-graph setting considered in [4].

Let G be compact connected Lie group G of dimension dG , with Lie algebra g, co-
algebra g∨, and unitary dual Ĝ ; for every irreducible representationν ∈ Ĝ we shall denote
by Ξν : G →C its character and by dim(ν) the dimension of its total space.

Let be given an isometric action µ : G ×M → M on (M ,κ). Then there is an extension
µ̃ : G × M̃ → M̃ where G acts on (M̃ , J ) as a group of biholomorphisms. This extended
holomorphic action preserves ρ and Ω, and is intertwined by the imaginary time expo-
nential with the cotangent action on T ∨M ∼= T M . Hence µ̃ is Hamiltonian for Ω, with a
moment mapΦ : M̃ → g∨ intertwined with the standard cotangent moment map.

For every τ ∈ (0,τmax), µ̃ restricts to an action µτ : G × X τ → X τ by CR contact auto-
morphisms commuting with the flow of υτp

ρ
. This determines unitary representations

of G on H(X τ) and preserving each eigenspace V j ; by the Theorem of Peter and Weyl,
there are unitary equivariant decompositions

(1.3) H(X τ) = ⊕
ν∈Ĝ

H(X τ)ν, V j =
⊕
ν∈Ĝ

V j ,ν, H(X τ)ν =
+∞⊕
j=1

V j ,ν

where H(X τ)ν is the ν-th equivariant component of H(X τ), and V j ,ν =V j ∩H(X τ)ν.
If Πτj ,ν : L2(X τ) → V j ,ν is the orthogonal projection, the ν-th equivariant analogue of

(1.2) is the smoothing operator kernel

(1.4) Πτχ,ν,λ :=∑
j
χ̂(λ−λ j )Πτj ,ν ∈C ∞(X τ×X τ),

which probes into the asymptotic distribution of the eigenvalues of Dτp
ρ

restricted to

H(X τ)ν and of the asymptotic concentration behaviour of the corresponding equivari-
ant eigenfunctions (belonging to V j ,ν).

A first part of the results we are reporting on concerns the scaling asymptotics of (1.4).
A parallel issue, specific to the Grauert tube setting, involves the complexified eigen-

functions of the non-negative Laplacian ∆ of (M ,κ). Let 0 = µ2
1 < µ2

2 < ·· · ↑ +∞, where
µ j ≥ 0, be the distinct eigenvalues of ∆, and let W j ⊆ L2(M) be the (finite-dimensional)
eigenspace of µ2

j . The induced unitary representation of G on L2(M) (defined in terms

of the invariant Riemannian density on M) determines unitary equivariant decomposi-
tions

(1.5) L2(M) = ⊕
ν∈Ĝ

L2(M)ν, W j =
⊕
ν∈Ĝ

W j ,ν, L2(M)ν =
+∞⊕
j=1

W j ,ν,

where W j ,ν = W j ∩L2(M)ν. For every j , let us choose an orthonormal basis (ϕ j ,ν,k )k of
W j ,ν. By a fundamental observation of Boutet de Monvel [1], there exists τ0 ∈ (0,τmax]
such that any eigenfunction ϕ of ∆ admits a holomorphic extension ϕ̃ to M̃τ0 ; further-
more, by suitably rescaling the complexified eigenfunctions (ϕ̃ j ,ν,k )k one obtains, by
restriction to X τ, a Riesz basis of H(X τ) (for discussions and alternative arguments,
see [12, 14, 15, 29, 30, 34, 38]). The asymptotic study of the complexified eigenfunc-
tions, also initiated by Zelditch (see, e.g., [33, 34, 36]), in the present equivariant setting
is pivoted on the study of the following analogue of (1.4):

(1.6) Pτ
χ,ν,λ(x, y) :=∑

j
χ̂(λ−µ j )e−2τµ j

∑
k
ϕ̃ j ,ν,k (x)ϕ̃ j ,ν,k (y).

To motivate the exponential ‘tempering factor’ e−2τµ j in (1.6), let us recall that the
relation between an eigenfunctionϕ of∆ for an eigenvalueµ2 and its complexification ϕ̃
(restricted to X τ) is mediated by the so-called Poisson-wave operator Pτ : C ∞(M) →
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O (X τ) (the latter being the ring of CR-holomorphic functions on X τ), according to the
relation

(1.7) Pτ(ϕ) = e−τµ ϕ̃.

The composition UC(2 ı τ) := Pτ◦Pτ∗ is a self-adjoint Fourier integral operator with com-
plex phase on X τ, having the same complex canonical relation as Πτ. In the action free
case (that is, with no ν involved), one can regard (1.6) as a smoothing of the distribu-
tional kernel of UC(2 ı τ), pertaining to a spectral band drifting to infinity as λ→+∞; in
the general equivariant case, one needs only compose with the projection with the ν-th
isotypical component. We refer to the derivation in (2.6)-(2.10) below for more details.
Furthermore, with notation as in (1.7), by [34, Corollary 3] for suitable constants C j > 0
and any eigenvalue µ≫ 0 one has estimates

C1µ
− d−1

2 eτµ ≤ sup
{∣∣ϕ̃(x)

∣∣ : x ∈ X τ
}≤C2µ

d+1
4 eτµ;

thus, e−2τµ j is exactly the factor needed in (1.6) in order to temper the exponential
growth of the complexified eigenfunctions.

In this announcement, we will outline some results concerning the local scaling
asymptotics of (1.4) and (1.6) as λ → +∞, and hint at some applications; more com-
plete statements and detailed proofs will appear in [10]. All the results discussed in this
work rest on the following general hypothesis.

Assumption 1.1. We shall assume that the following holds:

(1) Φ−1(0)∩ (M̃ \ M) ̸= ;;
(2) G acts locally freely on the latter set, i.e., 0 ∈ g∨ is a regular value of Φ|M̃\M ;
(3) supp(χ) ⊆ (t0 −ϵ, t0 +ϵ) for some t0 ∈R and ϵ> 0, with ϵ suitably small.

Let us set

Z :=Φ−1(0), Z τ := Z ∩X τ.

Thus Z τ ̸= ; and G acts locally freely on Z τ. This implies d > dG .
Furthermore, since µτ commutes with the ‘geodesic flow’ Γτ, i.e.,

µτg ◦Γτt = Γτt ◦µτg ∀g ∈G , t ∈R,

there is an induced G ×R-action on X τ. If x ∈ X τ, let us pose

xG×χ :=
{
µτg ◦Γτt (x) : g ∈G , t ∈ supp(χ)

}
,

and

Xτ
χ :=

{
(x1, x2) ∈ Z τ×Z τ : x1 ∈ xG×χ

2

}
.

Then (1.4) and (1.6) are negligible outside a shrinking neighbourhood of Xτ
χ in X τ×X τ.

Theorem 1.1. For any C , ϵ′ > 0, we have

Πτχ,ν,λ(x, y) =O
(
λ−∞)

and Pτ
χ,ν,λ(x, y) =O

(
λ−∞)

uniformly for

max
{

distX τ

(
x, yG×χ),distX τ

(
x, Z τ

)}≥C λϵ
′−1/2.

One is thus led to consider scaling asymptotics at points (x1, x2) ∈ Xτ
χ; these scaling

asymptotics are conveniently expressed in special systems of local coordinates on X τ,
called normal Heisenberg local coordinates in [23] (in the following, we shall use the
acronym NHLCs); the latter are slight specializations of the Heisenberg local coordi-
nates introduced in this setting in [5, 4], borrowing from constructions of Folland and
Stein in [8, 9] (we refer to [23, §3] for precise definitions and a detailed discussion). In
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such a system of coordinates, ψτ (the phase of the Fourier integral operator describ-
ingΠτ) has a canonical form, which allows for explicit computations.

Given a system of NHLCs centered at x ∈ X τ, we shall denote a point with coordinates
(θ,v) ∈ R×R2d−2 in additive notation x + (θ,v). Displacement in θ is tangent to first
order to the orbits of the geodesic flow, and in v to the CR distribution in X τ. When
θ = 0, we shall simply write x +v. Slightly more precisely, let us consider the direct sum
decomposition of vector bundles

T X τ =T τ⊕H τ,

where T τ = span(υτp
ρ

) is the ‘vertical tangent bundle’ and H τ = ker(ατ) is the ‘hor-

izontal tangent bundle’ (this heuristic terminology is inspired by the line bundle set-
ting). Given a system of NHLCs centered at x, we have ∂/∂θ|x ∈ T τ

x , and ∂/∂v|x ∈ H τ
x

for every v.
Regarding the scaling asymptotics of (1.4), let us mention here two notable special

cases, and refer to [10] for a more complete discussion. First, let us focus on the action-
free case, which was treated by Chang and Rabinowitz in [4]. Our results in this case
refine those in [4].

When G is trivial, we shall write xχ for xG×χ, and Πτ
χ,λ(x, y) for Πτ

χ,ν,λ(x, y). If χ ∈
C ∞

c

(
(t0 − ϵ, t0 + ϵ)

)
for some arbitrary t0 ∈ R and ϵ > 0 sufficiently small, then for any

x1 ∈ xχ2 there is a unique t1 = t1(x1, x2) ∈ supp(χ) such that x1 = Γτt1
(x2). Given choices of

NHLCs at x1 and x2, there are built-in unitary isomorphisms

H τ
x j

∼=Cd−1 ∼=R2d−2,

where the latter identification is the standard one; furthermore, there is a uniquely de-
termined symplectic matrix Mt1 ∈ Sp(2d −2) such that

Γτ−t1

(
x1 + (θ,v)

)= x2 +
(
θ+R3(θ,v), Mt1 v+R2(θ,v)

)
,

where R j (respectively, R j ) denotes a generic real-valued (respectively, vector-valued)
smooth function vanishing to j -th order at the origin [10]. The scaling asymptotics of
Πτ
χ,λ at (x1, x2) involve a complex-valued real quadratic function on H τ

x1
×H τ

x2
, hence

on R2d−2 ×R2d−2, depending on Mt1 .
To define the latter, given a general M ∈ Sp(2d −2) let us define the complex matrix

M̃ :=W M W −1, where W := 1p
2

(
Id−1 ı Id−1

Id−1 −ı Id−1

)
.

Then

(1.8) M̃ =
(

P Q

Q P

)
.

for certain complex matrices P and Q, where P satisfies ∥P (v)∥ ≥ ∥v∥, ∀v ∈ Cd−1

(see [7, §4.1]).

Definition 1.1. Given M ∈ Sp(2d −2), let us define ΨM : R2d−2 ×R2d−2 → C as follows.
Let v1, v2 ∈R2d−2 correspond to Z1, Z2 ∈Cd−1. Then

ΨM (v1,v2) := 1

2

(
Z †

1 Q P−1 Z1 +2 Z
†
2 P−1 Z1 −Z

†
2 P−1 Q Z 2 −∥Z1∥2 −∥Z2∥2

)
.

We refer to [7, 38, 39] for a thorough discussion of the relation ofΨM to the metaplectic
representation.
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Let be given systems of NHLCs on X τ centered at x j , j = 1,2, and tangent vectors
(θ j ,v j ) ∈R×R2d−2 ∼= Tx j X τ. Let us set

x j ,λ := x j +
(
θ jp
λ

,
v jp
λ

)
(λ> 0).

In the following statements, ∼ means ‘has the same asymptotics as’.

Theorem 1.2. Suppose that x1 = Γτt1
(x2) with t1 ∈ supp(χ) and choose C > 0 and ϵ′ ∈

(0,1/6). Then, uniformly for (θ j ,v j ) ∈ R×R2d−2 ∼= Tx j X τ with ∥(θ j ,v j )∥ ≤ C λϵ
′

the fol-
lowing asymptotic expansions holds for λ→+∞:

Πτχ,λ(x1,λ, x2,λ)

∼ 1p
2π

·
(
λ

2πτ

)d−1

·exp

(
1

τ

[
ı
p
λ (θ1 −θ2)+ΨM−1

t1
(v1,v2)

])
·e−ıλ t1

·e ı θτt1
(x) ·

[
χ(t1)+ ∑

k≥1
λ−k/2 Fk (x1, x2;θ1,v1,θ2,v2)

]
,

Pτ
χ,λ(x1,λ, x2,λ)

∼ 1p
2π

·
(

1

2

)d−1

·
(
λ

πτ

) d−1
2 ·exp

(
1

τ

[
ı
p
λ (θ1 −θ2)+ΨM−1

t1
(v1,v2)

])
·e ı θ̃τt1

(x) ·e−ıλ t1 ·
[
χ(t1)+ ∑

k≥1
λ−k/2 F̃k (x1, x2;θ1,v1,θ2,v2)

]
,

where e ı θτt1
(x), e ı θ̃τt1

(x) are appropriate unitary factor depending only on x1 and x2, and
Fk (x1, x2; ·), F̃k (x1, x2; ·) are polynomials in the rescaled variables of degree ≤ 3k and par-
ity k. Furthermore, these asymptotic expansions hold uniformly along Xτ.

One recovers the near-graph asymptotic expansion in [4] (with an explicit determi-
nation of the leading order factor and a bound on the degree of the Fk ’s) by rescaling
according to Heisenberg type, that is, by considering displacements of the type x j +
(θ j /λ,v j /

p
λ) with (θ j ,v j ) fixed.

Let us now consider the general equivariant case; for the sake of brevity, in this an-
nouncement we shall only describe scaling asymptotics along normal directions to Z τ;
more general statements will be given in [10].

Suppose that ϵ> 0 is sufficiently small andχ ∈C ∞
c

(
(t0−ϵ, t0+ϵ)

)
for some t0 ∈R. Then

for any (x1, x2) ∈Xτ
χ there is a unique t1 = t1(x1, x2) ∈ supp(χ) such that x1 = µτg ◦Γτt1

(x2)
for some g ∈G . Furthermore, if the stabilizer subgroup of x1 in G has cardinality r = rx1 ,
then there are exactly r elements g1, . . . , gr ∈G such that x1 =µτg j

◦Γτt1
(x2).

Fix, as above, systems of NHLCs on X τ centered at x j , j = 1,2, and tangent vectors
vt

j ∈ Tx j X τ normal to Z τ with respect to the Kähler metric; here the superscript t stands

for ‘transverse’, and refers to the notation in [10]. For λ> 0, let us set

x j ,λ := x j +
vt

jp
λ

.

Theorem 1.3. Under the previous assumptions, as λ→+∞,

Πτχ,ν,λ(x1,λ, x2,λ) ∼
r∑
ℓ=1
Πτχ,ν,λ(x1,λ, x2,λ)ℓ

and

Pτ
χ,ν,λ(x1,λ, x2,λ) ∼

r∑
ℓ=1

Pτ
χ,ν,λ(x1,λ, x2,λ)ℓ,
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where, for each ℓ= 1, . . . ,r ,

Πτχ,ν,λ(x1,λ, x2,λ)ℓ

∼ e−ıλ t1− 1
τ

(∥vt
1∥2+∥vt

2∥2) χ(t1)p
2π

(
λ

2πτ

)d−1−dG /2

dim(ν)

·
[

Bt1 (x1, x2)

Veff(x1)
·Ξν(gℓ)+ ∑

k≥1
λ−k/2 Fk,l

(
x1, x2;vt

1,vt
2

)]
,

Pτ
χ,ν,λ(x1,λ, x2,λ)ℓ

∼ e−ıλ t1− 1
τ

(∥vt
1∥2+∥vt

2∥2) χ(t1)p
2π

(
1

2

)d−1−dG /2 (
λ

πτ

)(d−1−dG )/2

·dim(ν)

[
B̃t1 (x1, x2)

Veff(x1)
·Ξν(gℓ)+ ∑

k≥1
λ−k/2 F̃k,l

(
x1, x2;vt

1,vt
2

)]
,

where Bt1 (x1, x2) and B̃t1 (x1, x2) depend on Poincaré type data, Veff(x1) is the so-called
effective potential at x1 (the volume of the G-orbit through x1), and Fk,l (x1, x2; ·, ·) and
F̃k,l (x1, x2; ·, ·) are polynomials of degree ≤ 3k and parity k.

For an explicit description of Bt1 (x1, x2) and B̃t1 (x1, x2) we refer to [10].
Let us mention a few applications of the previous equivariant scaling asymptotics,

inspired by the work of Zelditch [34, 38] and Chang and Rabinowitz [4].
An almost immediate consequence of the scaling asymptotics for Pτ

χ,ν,λ is a point-

wise bound on the equivariant complexified eigenfunctions: for some constant Cν > 0,

sup
x∈X τ

∣∣ϕ̃ j ,ν,k (x)
∣∣2 ≤Cν e2τµ j

(µ j

τ

)(d−1−dG )/2
,

which refines the upper bound in [38, (4)].
Essentially by performing a Gaussian integration on the asymptotics for Pτ

χ,ν,λ one

also obtains an estimate on the L2-norms of the complexified eigenfunctions:

(1.9)
∑

λ≤µ j ≤λ+1

∑
k j

∥∥∥ϕ̃ j ,ν,k j

∥∥∥
L2(X τ)

≤Cτ
ν e2τλλ

d−1
2 −dG .

We shall also briefly report on an equivariant version of the operator norm estimates
established by Chang and Rabinowitz in [4]. Namely, we seek an estimate on the norm
ofΠτ

χ,ν,λ, viewed as an operator Lp (X τ) → Lq (X τ).

In the action-free case, Chang and Rabinowitz have given the estimate

(1.10)
∥∥∥Πτχ,λ

∥∥∥
Lp→Lq

≤Cτ
p λ

(d−1)
(

1
p − 1

q

)
,

for p, q ≥ 1. This is the analogue of a similar operator norm estimate by Shiffman and
Zelditch on the equivariant components of the Szegő kernel in the line bundle set-
ting [26]; the proof follows the same lines and is based on pairing scaling asymptotics
with the Shur–Young inequality [28].

In the equivariant case, (1.10) admits the following refinement.

Theorem 1.4. Under Assumption 1.1, for some Cp,ν > 0 we have

∥∥∥Πτχ,ν,λ

∥∥∥
Lp→Lq

≤Cp,ν

(
λ

τ

)(
d−1− 1

2 dG
)( 1

p − 1
q

)
.
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Similar estimates hold for Pτ
χ,ν,λ : Lp (X τ) → Lq (X τ). The proof is essentially an equi-

variant adaptation of the one for the action-free case; a preliminary step is to ensure that
the scaling asymptotics forΠτ

χ,ν,λ and Pτ
χ,ν,λ hold uniformly along Z τ.

These operator norm estimates may also be viewed as the counterpart, in the Grauert
tube setting, of estimates proved by Sogge in the real domain for the spectral projector
of the Laplacian relative to a spectral band drifting to infinity ([27, 28]). While Sogge’s
estimates are rarely sharp on general manifolds, in the action free case Chang and Rabi-
nowitz have proved in [4] that the corresponding estimates in the complex domain are
generally sharp. Actually, sharpness may also be established in the present equivariant
setting, by adapting the argument in [4] to the functionsΦy

χ,ν,λ : X τ→C given by

Φ
y
χ,ν,λ(·) :=

Πτ
χ,ν,λ(·, y)

∥Πτ
χ,ν,λ(·, y)∥Lp

,

where y ∈ Z τ is fixed, and making use of the equivariant asymptotics in Theorem 1.3.
For a more precise discussion of the above, and for additional applications, such as

equivariant Husimi and Weyl type estimates, see [10].

2. Strategy of proof

Let us give a broad illustration of the basic strategy of the proofs in [10] of Theo-
rems 1.1, 1.2, and 1.3, focusing first on the Toeplitz operator Dτp

ρ
.

To begin with, if Pν : L2(X τ) → L2(X τ)ν is the orthogonal projector onto the ν-th iso-
typical component, then

(2.1) Πτχ,ν,λ = Pν ◦Πτχ,λ.

In terms of distributional kernels, this reads

(2.2) Πτχ,ν,λ(x1, x2) = dim(ν)
∫

G
Ξν(g )Πτχ,λ

(
µτg−1 (x1), x2

)
dVG (g ).

Next, one considers the 1-parameter group of unitary Toeplitz operators

Uτp
ρ(t ) := e

ı t Dτp
ρ (t ∈R)

generated by Dτp
ρ

. Then (passing to distributional kernels)

(2.3) Πτχ,λ(x, y) = 1p
2π

∫ +∞

−∞
e−ıλ t χ(t )Uτp

ρ(t ; x, y)dt .

The next step, following an insight of Zelditch which goes back to [32] (see also [34,
38, 39]), is to represent Uτp

ρ
(t ), up to a smoothing operator, as a ‘dynamical Toeplitz

operator’:

(2.4) Uτp
ρ(t ) =Πτ ◦Pτ

t ◦Πτ−t +Sτt ,

where Πτ−t (x, y) := Πτ (
Γτ−t (x), y

)
, Pτ

t is an appropriate smoothly varying zeroth-order
pseudo-differential operator, and Sτt is a smoothly varying smoothing operator.

In order to make the previous composition asymptotically computable, one needs to
insert the microlocal description ofΠτ a Fourier integral operator from [2]:

Πτ(x, y) ∼
∫ +∞

0
e ı vψτ(x,y) sτ

(
x, y, v

)
dv,



Equivariant asymptotics on Grauert tubes 59

where the phase ψτ is determined by the defining equation of X τ ⊆ M̃ , and sτ is a semi-
classical symbol. Up to a negligible contribution, one obtains for Πτ

χ,ν,λ(x1, x2) an ex-

pression as an oscillatory integral, with a phase factor of the form e ıλΨ, where

(2.5) Ψ(x1, x2; g , t , y,u, v) := uψτ
(
µτg−1 (x1), y

)+ vψτ
(
Γτ−t (y), x2 y

)− t .

The next step is to use integration by parts to justify the reduction of integration to
a shrinking domain, which can be parametrized using rescaled coordinates. Working
in NLHC’s and then rescaling, one can expand Ψ building on the computations in [23,
§3.4]. The outcome is a reformulation of (2.3), up to a negligible contribution, as an
oscillatory integral in the parameter

p
λ→+∞, with an explicit simple real phase. One

then proceeds essentially applying the Stationary Phase Lemma.
Let us sketch how the previous approach can be modified to deal with the ‘complexi-

fied smoothed spectral projector’ (1.6) (see the discussions in [34, 38, 5, 4]). The natural

starting point is the half-wave operator U (t ) := e ı t
p
∆ : L2(M) → L2(M); assuming that

the orthonormal basis (ϕ j ,k )k of V j is composed of real functions, its distributional ker-
nel is

(2.6) U (t ;m,n) :=
+∞∑
j=1

e ıµ j t
∑
k
ϕ j ,k (m) ·ϕ j ,k (n) (m,n ∈ M).

Its equivariant version is the 1-parameter group of unitary operators Uν(t ) := Pν ◦e ı
p
∆ :

L2(M)ν→ L2(M)ν, which may be naturally regarded as a 1-parameter family of operators
Uν(t ) : L2(M) → L2(M). Its distributional kernel is

(2.7) Uν(t ;m,n) :=
+∞∑
j=1

e ıµ j t
∑
k
ϕ j ,ν,k (m) ·ϕ j ,ν,k (n),

where the inner sum is now over an orthonormal (real) basis (ϕ j ,ν,k )k of V j ,ν.
For τ> 0, the kernel U (t ;m,n) admits a holomorphic extension in the time variable,

denoted U (t + ı τ,m,n), given by

(2.8) U (t + ı τ;m,n) :=
+∞∑
j=1

e(−τ+ı t )µ j
∑
k
ϕ j ,k (m) ·ϕ j ,k (n).

When t = 0, in particular, U (ı τ; ·, ·) is the Poisson kernel on M×M . For τ> 0, the Poisson
kernel is real-analytic on M ×M , and for τ ∈ (0,τ0) it can be extended in the first spacial
variable to a kernel

(2.9) Pτ(x,n) :=
+∞∑
j=1

e−τµ j
∑
k
ϕ̃ j ,k (x) ·ϕ j ,k (n) (x ∈ X τ, n ∈ M),

which defines a Fourier integral operator Pτ with complex phase and of degree −(d −
1)/4. For every s ∈R, (2.9) determines an isomorphism Pτ : W s (M) →O s+ d−1

4 (X τ), where

W s (M) is the s-th Sobolev space on M , and O s+ d−1
4 (X τ) is the space of CR functions

on X τ that are in W s+ d−1
4 (X τ). The distributional kernel of Pτ

ν := Pτ ◦Pν is then clearly

(2.10) Pτ
ν(x,n) :=

+∞∑
j=1

e−τµ j
∑
k
ϕ̃ j ,ν,k (x) ·ϕ j ,ν,k (n).

Following Zelditch, one considers the composition

(2.11) UC(t +2 ı τ) := Pτ ◦U (t )◦Pτ∗,

which is a Fourier integral operator with complex phase on X τ of degree −(d −1)/2, and
its equivariant version

(2.12) UC(t +2 ı τ)ν := Pτ
ν ◦U (t )◦Pτ∗ = Pτ ◦U (t )◦Pτ

ν
∗.
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The link between (1.6) and (2.12) is encapsulated in the relation

Pτ
χ,ν,λ(x1, x2) = 1p

2π

∫ +∞

−∞
χ(t )e−ıλ t UC(t +2 ı τ; x, y)νdt(2.13)

= dim(ν)p
2π

∫ +∞

−∞
dt

∫
G

dVG (g )[
χ(t )e−ıλ t Ξν

(
g−1)UC

(
t +2 ı τ;µτg−1 (x1), x2

)]
.

Furthermore, UC (t +2 ı τ) admits a description via dynamical Toeplitz operators anal-
ogous to (2.4): for an appropriate smoothly varying pseudodifferential operator Qτ

t of
degree −(d −1)/2 on X τ, one has

(2.14) UC (t +2 ı τ) =Πτ ◦Qτ
t ◦Πτ−t +Rτ

t ,

where Rτ
t is a smoothly varying smoothing operator.

The rest of the argument is formally similar to the one forΠτ
χ,ν,λ.
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