We define variational properties for dynamical systems with subexponential complexity, and study these properties in certain specific examples. By computing the value of slow entropy directly, we show that some subshifts are not variational, while a class of interval exchange transformations are variational.
Published online:
Keywords: entropy, complexity, slow entropy, subshifts, interval exchange transformations (IETs)
Minhua Cheng 1; Carlos Ospina 1; Kurt Vinhage 1; Yibo Zhai 1

@article{MRR_2025__6__17_0, author = {Minhua Cheng and Carlos Ospina and Kurt Vinhage and Yibo Zhai}, title = {Slow entropy and variational dynamical systems}, journal = {Mathematics Research Reports}, pages = {17--49}, publisher = {MathOA foundation}, volume = {6}, year = {2025}, doi = {10.5802/mrr.22}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/} }
TY - JOUR AU - Minhua Cheng AU - Carlos Ospina AU - Kurt Vinhage AU - Yibo Zhai TI - Slow entropy and variational dynamical systems JO - Mathematics Research Reports PY - 2025 SP - 17 EP - 49 VL - 6 PB - MathOA foundation UR - https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/ DO - 10.5802/mrr.22 LA - en ID - MRR_2025__6__17_0 ER -
%0 Journal Article %A Minhua Cheng %A Carlos Ospina %A Kurt Vinhage %A Yibo Zhai %T Slow entropy and variational dynamical systems %J Mathematics Research Reports %D 2025 %P 17-49 %V 6 %I MathOA foundation %U https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/ %R 10.5802/mrr.22 %G en %F MRR_2025__6__17_0
Minhua Cheng; Carlos Ospina; Kurt Vinhage; Yibo Zhai. Slow entropy and variational dynamical systems. Mathematics Research Reports, Volume 6 (2025), pp. 17-49. doi : 10.5802/mrr.22. https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/
[1] Three distance theorems and combinatorics on words, L’Enseignement Mathématique, Volume 44 (1998), pp. 103-132 | MR | Zbl
[2] Slow entropy for some Anosov-Katok diffeomorphisms, Discrete and Continuos Dynamical Systems, Volume 43 (2023) no. 1, pp. 209-255 | DOI | MR | Zbl
[3] Slow entropy of some combinatorial constructions, Nonlinearity, Volume 36 (2023) no. 6, pp. 2923-2974 | DOI | MR | Zbl
[4] Entropy for Group Endomorphisms and Homogeneous Spaces, Transactions of the American Mathematical Society, Volume 153 (1971), pp. 401-414 | DOI | MR | Zbl
[5] Winning games for bounded geodesics in moduli spaces of quadratic differentials, Journal of Modern Dynamics, Volume 7 (2013) no. 3, pp. 395-427 | DOI | MR | Zbl
[6] Low complexity subshifts have discrete spectrum, Forum of Mathematics, Sigma, Volume 11 (2023), p. e96 | DOI | MR | Zbl
[7] The complexity threshold for the emergence of Kakutani inequivalence, Israel J. Math., Volume 251 (2022) no. 1, pp. 271-300 | DOI | MR | Zbl
[8] The automorphism group of a shift of slow growth is amenable, Ergodic Theory Dynam. Systems, Volume 40 (2020) no. 7, pp. 1788-1804 | DOI | MR | Zbl
[9] Subsystems of transitive subshifts with linear complexity, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 6, p. 1967–1993 | DOI | MR | Zbl
[10] The geometry of fractal sets, Cambridge University Press, 1985 | DOI | MR
[11] Measure-theoretic complexity of ergodic systems, Israel Journal of Mathematics, Volume 100 (1997) no. 1, pp. 189-207 | DOI | MR | Zbl
[12] Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2002 | DOI
[13] Mild mixing property for special flows under piecewise constant functions, 2007 | arXiv
[14] Topological entropy bounds measure-theoretic entropy, Proceedings of the American Mathematical Society, Volume 23 (1969) no. 3, pp. 679-688 | DOI | MR | Zbl
[15] -sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 13 (1969), pp. 123-131 | DOI | MR | Zbl
[16] Slow entropy for some smooth flows on surfaces, Israel Journal of Mathematics, Volume 226 (2018), pp. 535-577 | DOI | MR | Zbl
[17] Slow Entropy of Some Parabolic Flows, Communications in Mathematical Physics, Volume 370 (2019), pp. 449-474 | DOI | MR | Zbl
[18] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l’IHÉS, Volume 51 (1980), pp. 137-173 | DOI | Numdam
[19] Entropy and closed geodesies, Ergodic Theory and Dynamical Systems, Volume 2 (1982) no. 3–4, p. 339–365 | DOI | MR
[20] Fifty years of entropy in dynamics: 1958–2007, Frontiers in Entropy Across the Disciplines: Panorama of Entropy: Theory, Computation, and Applications, World Scientific, 2023, pp. 353-404
[21] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge university press, 1995 no. 54 | DOI
[22] Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Annales de l’I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 3, pp. 323-338 | Numdam | MR | Zbl
[23] Interval Exchange Transformations., Mathematische Zeitschrift, Volume 141 (1975), pp. 25-32 http://eudml.org/doc/172152 | DOI | MR | Zbl
[24] Continued Fractions, Dover books on mathematics, Dover Publications, 1997 | MR
[25] Local finiteness and automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, Volume 43 (2023) no. 6, pp. 1980-2001 | DOI | MR | Zbl
[26] On the structure of generic subshifts, Nonlinearity, Volume 36 (2023) no. 9, pp. 4904-4953 | DOI | MR | Zbl
[27] Mild mixing of certain interval-exchange transformations, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 1, p. 248–256 | DOI | MR | Zbl
[28] On Badly Approximable Numbers and Certain Games, Transactions of the American Mathematical Society, Volume 123 (1) no. 1966, pp. 178-199 | MR | Zbl
[29] Badly approximable affine forms and Schmidt games, Journal of Number Theory, Volume 129 (2009) no. 12, pp. 3020-3025 | DOI | MR | Zbl
[30] Boshernitzan’s criterion for unique ergodicity of an interval exchange transformation, Ergodic Theory and Dynamical Systems, Volume 7 (1987) no. 1, p. 149–153 | DOI | MR | Zbl
[31] Ergodic theory of interval exchange maps., Revista Matemática Complutense, Volume 19 (2006) no. 1, pp. 7-100 http://eudml.org/doc/40876 | MR | Zbl
[32] Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2016 | MR
[33] Interval Exchange Maps and Translation Surfaces, Homogeneous Flows, Moduli Spaces, and Arithmetic (Clay mathematics proceedings), Volume 10, American Mathematical Society, 2010, pp. 1-69 | Zbl
Cited by Sources: