Slow entropy and variational dynamical systems
Mathematics Research Reports, Volume 6 (2025), pp. 17-49.

We define variational properties for dynamical systems with subexponential complexity, and study these properties in certain specific examples. By computing the value of slow entropy directly, we show that some subshifts are not variational, while a class of interval exchange transformations are variational.

Received:
Published online:
DOI: 10.5802/mrr.22
Classification: 37A35, 37D35
Keywords: entropy, complexity, slow entropy, subshifts, interval exchange transformations (IETs)

Minhua Cheng 1; Carlos Ospina 1; Kurt Vinhage 1; Yibo Zhai 1

1 Department of Mathematics, University of Utah, Salt Lake City, UT 84112
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{MRR_2025__6__17_0,
     author = {Minhua Cheng and Carlos Ospina and Kurt Vinhage and Yibo Zhai},
     title = {Slow entropy and variational dynamical systems},
     journal = {Mathematics Research Reports},
     pages = {17--49},
     publisher = {MathOA foundation},
     volume = {6},
     year = {2025},
     doi = {10.5802/mrr.22},
     language = {en},
     url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/}
}
TY  - JOUR
AU  - Minhua Cheng
AU  - Carlos Ospina
AU  - Kurt Vinhage
AU  - Yibo Zhai
TI  - Slow entropy and variational dynamical systems
JO  - Mathematics Research Reports
PY  - 2025
SP  - 17
EP  - 49
VL  - 6
PB  - MathOA foundation
UR  - https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/
DO  - 10.5802/mrr.22
LA  - en
ID  - MRR_2025__6__17_0
ER  - 
%0 Journal Article
%A Minhua Cheng
%A Carlos Ospina
%A Kurt Vinhage
%A Yibo Zhai
%T Slow entropy and variational dynamical systems
%J Mathematics Research Reports
%D 2025
%P 17-49
%V 6
%I MathOA foundation
%U https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/
%R 10.5802/mrr.22
%G en
%F MRR_2025__6__17_0
Minhua Cheng; Carlos Ospina; Kurt Vinhage; Yibo Zhai. Slow entropy and variational dynamical systems. Mathematics Research Reports, Volume 6 (2025), pp. 17-49. doi : 10.5802/mrr.22. https://mrr.centre-mersenne.org/articles/10.5802/mrr.22/

[1] Pascal Alessandri; Valérie Berthé Three distance theorems and combinatorics on words, L’Enseignement Mathématique, Volume 44 (1998), pp. 103-132 | MR | Zbl

[2] Shilpak Banerjee; Philipp Kunde; Daren Wei Slow entropy for some Anosov-Katok diffeomorphisms, Discrete and Continuos Dynamical Systems, Volume 43 (2023) no. 1, pp. 209-255 | DOI | MR | Zbl

[3] Shilpak Banerjee; Philipp Kunde; Daren Wei Slow entropy of some combinatorial constructions, Nonlinearity, Volume 36 (2023) no. 6, pp. 2923-2974 | DOI | MR | Zbl

[4] Rufus Bowen Entropy for Group Endomorphisms and Homogeneous Spaces, Transactions of the American Mathematical Society, Volume 153 (1971), pp. 401-414 | DOI | MR | Zbl

[5] Jonathan Chaika; Yitwah Cheung; Howard Masur Winning games for bounded geodesics in moduli spaces of quadratic differentials, Journal of Modern Dynamics, Volume 7 (2013) no. 3, pp. 395-427 | DOI | MR | Zbl

[6] Darren Creutz; Ronnie Pavlov Low complexity subshifts have discrete spectrum, Forum of Mathematics, Sigma, Volume 11 (2023), p. e96 | DOI | MR | Zbl

[7] Van Cyr; Aimee Johnson; Bryna Kra; Ayse Sahin The complexity threshold for the emergence of Kakutani inequivalence, Israel J. Math., Volume 251 (2022) no. 1, pp. 271-300 | DOI | MR | Zbl

[8] Van Cyr; Bryna Kra The automorphism group of a shift of slow growth is amenable, Ergodic Theory Dynam. Systems, Volume 40 (2020) no. 7, pp. 1788-1804 | DOI | MR | Zbl

[9] Andrew Dykstra; Nicholas Ormes; Ronnie Pavlov Subsystems of transitive subshifts with linear complexity, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 6, p. 1967–1993 | DOI | MR | Zbl

[10] Kenneth John Falconer The geometry of fractal sets, Cambridge University Press, 1985 | DOI | MR

[11] Sébastien Ferenczi Measure-theoretic complexity of ergodic systems, Israel Journal of Mathematics, Volume 100 (1997) no. 1, pp. 189-207 | DOI | MR | Zbl

[12] N. Pytheas Fogg Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2002 | DOI

[13] Krzysztof Fraczek; Mariusz Lemańczyk; Emmanuel Lesigne Mild mixing property for special flows under piecewise constant functions, 2007 | arXiv

[14] L Wayne Goodwyn Topological entropy bounds measure-theoretic entropy, Proceedings of the American Mathematical Society, Volume 23 (1969) no. 3, pp. 679-688 | DOI | MR | Zbl

[15] Konrad Jacobs; Michael Keane 0-1-sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 13 (1969), pp. 123-131 | DOI | MR | Zbl

[16] Adam Kanigowski Slow entropy for some smooth flows on surfaces, Israel Journal of Mathematics, Volume 226 (2018), pp. 535-577 | DOI | MR | Zbl

[17] Adam Kanigowski; Kurt Vinhage; Daren Wei Slow Entropy of Some Parabolic Flows, Communications in Mathematical Physics, Volume 370 (2019), pp. 449-474 | DOI | MR | Zbl

[18] Anatole Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l’IHÉS, Volume 51 (1980), pp. 137-173 | DOI | Numdam

[19] Anatole Katok Entropy and closed geodesies, Ergodic Theory and Dynamical Systems, Volume 2 (1982) no. 3–4, p. 339–365 | DOI | MR

[20] Anatole Katok Fifty years of entropy in dynamics: 1958–2007, Frontiers in Entropy Across the Disciplines: Panorama of Entropy: Theory, Computation, and Applications, World Scientific, 2023, pp. 353-404

[21] Anatole Katok; Boris Hasselblatt Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge university press, 1995 no. 54 | DOI

[22] Anatole Katok; Jean-Paul Thouvenot Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Annales de l’I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 3, pp. 323-338 | Numdam | MR | Zbl

[23] Michael Keane Interval Exchange Transformations., Mathematische Zeitschrift, Volume 141 (1975), pp. 25-32 http://eudml.org/doc/172152 | DOI | MR | Zbl

[24] A. Ya. Khinchin Continued Fractions, Dover books on mathematics, Dover Publications, 1997 | MR

[25] Ronnie Pavlov; Scott Schmieding Local finiteness and automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, Volume 43 (2023) no. 6, pp. 1980-2001 | DOI | MR | Zbl

[26] Ronnie Pavlov; Scott Schmieding On the structure of generic subshifts, Nonlinearity, Volume 36 (2023) no. 9, pp. 4904-4953 | DOI | MR | Zbl

[27] Donald Robertson Mild mixing of certain interval-exchange transformations, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 1, p. 248–256 | DOI | MR | Zbl

[28] Wolfgang M. Schmidt On Badly Approximable Numbers and Certain Games, Transactions of the American Mathematical Society, Volume 123 (1) no. 1966, pp. 178-199 | MR | Zbl

[29] Jimmy Tseng Badly approximable affine forms and Schmidt games, Journal of Number Theory, Volume 129 (2009) no. 12, pp. 3020-3025 | DOI | MR | Zbl

[30] William A. Veech Boshernitzan’s criterion for unique ergodicity of an interval exchange transformation, Ergodic Theory and Dynamical Systems, Volume 7 (1987) no. 1, p. 149–153 | DOI | MR | Zbl

[31] Marcelo Viana Ergodic theory of interval exchange maps., Revista Matemática Complutense, Volume 19 (2006) no. 1, pp. 7-100 http://eudml.org/doc/40876 | MR | Zbl

[32] Marcelo Viana; Krerley Oliveira Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2016 | MR

[33] Jean-Christophe Yoccoz Interval Exchange Maps and Translation Surfaces, Homogeneous Flows, Moduli Spaces, and Arithmetic (Clay mathematics proceedings), Volume 10, American Mathematical Society, 2010, pp. 1-69 | Zbl

Cited by Sources: