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Abstract. We define variational properties for dynamical systems with
subexponential complexity, and study these properties in certain spe-
cific examples. By computing the value of slow entropy directly, we
show that some subshifts are not variational, while a class of interval
exchange transformations are variational.

1. Introduction

The metric and topological entropies for measure-preserving and topological dy-
namical systems are often the first and most important invariants to study. These no-
tions of entropy are numbers assigned to a dynamical system which assigns a complexity
based on the exponential growth rate of the number of distinguishable orbit segments.

We will investigate foundational properties of the slow entropy-type invariants intro-
duced by Katok and Thouvenot [22], with an emphasis on establishing some results ac-
cepted as folklore, as well as some features of the usual entropy that do not pass to the
invariants at subexponential rates.

We recall the usual definitions of entropy in dynamical contexts in Section 3.1. En-
tropy as a dynamical invariant stems from its formulation in information theory by
Shannon. In the smooth setting, entropy is connected with the study of Lyapunov ex-
ponents due to the Pesin and Ledrappier–Young entropy formulas. These formulas and
perspectives have played crucial roles in seemingly unrelated areas such as thermody-
namical formalism, progress on the Furstenberg (×2,×3)-conjecture and its generaliza-
tions, and the superrigidity phenomena for higher-rank Lie groups (the Zimmer pro-
gram).

We refer the reader to [21, Sections 3.1 and 4.3] for a more detailed introduction to
the classical entropy theory, and [20] for a review of the history of the standard entropy
theory and more context on the history hinted at here.

1.1. The variational principle. The metric and topological entropies for continuous
transformations are linked via the variational principle:

(1.1) htop(T ) = sup
µ∈M T

hµ(T ),

where M T is the set of T -invariant Borel probability measures. If this supremum is
achieved, a measure for which hµ(T ) = htop(T ) is called a measure of maximal entropy
(or MME).

The variational principle is the fundamental connection between the two entropy
theories, and features of a measure of maximal entropy can reveal many properties of
the underlying dynamical system. For instance, for geodesic flows in negative curvature,
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it is conjectured that the measure of maximal entropy is the Liouville measure if and
only if the underlying manifold is locally symmetric. This is known for surfaces [19], but
it remains open as the Katok entropy conjecture in higher dimensions.

For general flows and diffeomorphisms on surfaces, a measure of maximal entropy
has fractional dimension, and the closer it is to the dimension of the manifold, the more
“equidistributed” the divergence is in the space.

1.2. Slow entropy invariants. The slow entropy of a dynamical system is a class of in-
variants which can describe subexponential growth rates such as polynomial or loga-
rithmic, and indeed can be given specific numerical values which are invariants of uni-
formly continuous or measure-preserving conjugacy, depending on the category. The
terminology slow entropy was introduced by Katok and Thouvenot [22], but others have
studied it under various other names, including measure-theoretic complexity [11]. In
the setting of shift spaces using language complexity (or simply the complexity, see Sec-
tion 3.2). These correspond to the metric and topological slow entropy, respectively.

We discuss the definitions and basic properties in Section 2, but introduce some no-
tation here, where the notation pχ(n) = nχ represents the family of polynomial scales:

• if hµ,pχ = d , then the number of orbit types of length n which can be distin-

guished by µ is approximately nd , and
• if htop,pχ = d , then the number of orbit types of length n which are topologically

distinguished is approximately nd .

By analogy, the classical entropy can be seen as the slow entropy with respect to the
family of exponential scales eχ(n) = eχn , and one may consider in general entropies at a
more general family of scales aχ.

Slow entropy or measure-theoretic complexity has many applications in classifica-
tion questions. One important characterization is those systems with minimal com-
plexity. This was first proved by Ferenczi in [11], where the result was phrased using
measure-theoretic complexity. We present a proof of this theorem in Section 5.

1.3. Variational systems. It is natural to ask whether Equation (1.1) holds for slow en-
tropy. We will see that the answer in general is no (Theorem 1.2), motivating the follow-
ing definition. We refer the reader to Section 2 for any undefined terms.

Definition 1.1. Let (X ,d) be a metric space and T : X → X be a transformation. We say
that T is variational at the family of scales { aχ } if

htop,aχ = sup
µ∈M T

hµ,aχ .

We say that T is strongly variational at the family of scales { aχ } if there exists a unique
measure µ0 for which

htop,aχ = hµ0,aχ .

Variational properties of several known examples can be deduced from from existing
work:

• Transitive translations on compact abelian groups are strongly variational at all
scales (Ferenczi’s Theorem [11], Theorem 5.2).

• All continuous transformations of compact spaces are variational at exponential
scale (This is the classical variational principle; see, e.g., [21, Theorem 4.5.3]).

• Uniformly hyperbolic dynamical systems are strongly variational at exponential
scale (Existence and uniqueness of MMEs for uniformly hyperbolic follows from
classical works of Bowen and Margulis).
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• Transitive unipotent flows are strongly variational at polynomial scale ([17]).
• Some smooth systems obtained from combinatorial constructions are not vari-

ational ([2, 3]).

In this paper, we establish the following theorems towards understanding which sys-
tems are variational:

Theorem 1.2. Sturmian subshifts and Denjoy circle transformations are not variational
at polynomial scale.

Theorem 1.3. There exists a full Hausdorff dimension subset of 3-IETs which are strongly
variational at polynomial scale.

Theorem 1.2 is proved in Section 6.1, and Theorem 1.3 is proved in Section 7.5. We
also provide a precise description of a full Hausdorff dimension set of 3-IETs which are
variational at polynomial scale.

1.4. Future directions. The proof of Theorem 1.3 requires strong Diophantine condi-
tions to compute the slow entropy of the 3-IETs. While it is likely that these conditions
can be relaxed, the proof suggests that intermediate behavior for slow entropy is possi-
ble. In particular, we believe that some 3-IETs are not variational.

This is perhaps less shocking after noting that interval exchange transformations
have discontinuities. However, by adding roof functions with controlled singularities,
such transformations are realized as first return maps for surface flows with stationary
points. It is therefore natural to ask whether the surface flows are variational. The slow
entropy of some surface flows was computed in [16], so a computation of their topolog-
ical slow entropy would determine their variational properties.

In Section 6.4, we observe that slow entropy does not behave like exponential entropy
with respect to ergodic decompositions, and there is little hope to obtain a universal for-
mula. In fact, one may have a system with positive slow entropy for which every ergodic
component is Kronecker. It is natural to ask how large the gap between the entropy of
the ergodic components and the entropy of the integrated system can become. By the
usual formula for entropy given an ergodic decomposition, we know that the gap cannot
be exponential.

For strongly variational systems, one can try to discern what information about the
underlying system can be learned from properties of the entropy maximizing measure.
Particularly, there may be analogs of the Katok entropy conjecture for systems with posi-
tive and finite entropy at polynomial scale. Correspondingly, for nonvariational systems,
one should be able to identify some erratic divergence of orbits which is seen a the topo-
logical level but not detected by measures.

Finally, we note that for non-variational systems, the gap between supµ∈M (X ) hµ,aχ
and htop,aχ can be very large (Theorems 6.5 and 6.6). The examples we describe here
are uniquely ergodic, and the metric slow entropy is 0 at all scales, but the topological
slow entropy is very large. It would be interesting to find non-variational systems with
many invariant measures, and variational systems which are not strongly variational at
a subexponential scale.

1.5. Organization of the paper. In Section 2, we review three types of invariants for sys-
tems with zero entropy at an exponential scale. The first is the topological slow entropy
which we denote htop,aχ . This is an invariant of dynamical systems under uniformly
continuous conjugations. The second invariant is the metric slow entropy hµ,aχ , which
is an invariant of measure-preserving systems. The third and last invariant of measure-
preserving systems on metric spaces is the semi-topological slow entropy hsemi,µ,aχ . We
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compare these definitions with the classical topological and metric entropies. In Sec-
tion 3, we show that slow entropy coincides with other entropy and complexity invari-
ants. In particular, Theorem 3.3 shows that the slow entropies are the classical entropies
when aχ(n) = eχn , and Proposition 3.4 shows that the topological slow entropy of a sub-
shift captures the usual complexity function studied in those settings.

In Section 4, we present two results, although not new and generally considered “folk-
lore,” they are adaptations of standard arguments in the classical entropy setting to ar-
bitrary scales. Particularly, Theorem 4.1 was proved for first time in [14] to show that the
topological entropy is larger or equal to the metric entropy. We prove that this result is
still true without requiring continuity of the system, and also, to include in the inequal-
ity the semi-topological entropy. To summarize, we are able to prove, for any scale aχ,
the inequality

hµ,aχ ≤ hsemi,µ,aχ ≤ htop,aχ .

Section 5 is mainly expository. We have parsed [11, Proposition 3] in Theorem 5.2, to
rewrite it to our notation and for referencing in later results of this paper. We remark
that is crucial for proving Theorem 1.2. In Sections 6.1 and 6.3, we prove Theorem 1.2.
We compute the semi-topological slow entropy of Sturmian systems, the main result
is summarized in Theorem 6.4, and we add a discussion of Denjoy circle transforma-
tions to show that these systems are not variational. Finally, we discuss the interaction
between slow entropy and the ergodic decomposition, see Section 6.4. In particular,
in Lemma 6.11 we show that that the metric entropy of the geodesic flow on a flat torus
is equal to 1 at polynomial scale, but 0 with respect to any ergodic measure and for any
arbitrary scale.

In Section 7, we introduce the background of interval exchange transformations and
prove Theorem 1.3.

2. Definitions

Let f : X → X be a measurable transformation on a locally compact metric space. We
denote (X ,d) the metric structure, and if µ is a Radon measure, let (X ,µ,B) denote the
triple determining a measure space andσ-algebra of Borel sets B. Ifµ is f -invariant, i.e.,
∀B ∈ B µ( f −1(B)) = µ(B), then we say that (X ,µ, f ,B) is a measure preserving system.
We do not assumeµ is ergodic, instead, we mention it whenever it is necessary. However,
unless otherwise noted, we will assume that µ is a probability measure, i.e., µ(X ) = 1.

2.1. Topological slow entropy. For x ∈ X , and ϵ > 0, let B(x,ϵ) = {y ∈ X : d(x, y) < ϵ}
denote an open ball. For n a non-negative integer and ϵ a positive real number, it is not
hard to check that the map

d n
f (x, y) = max

0≤i≤n−1
d( f i (x), f i (y))

defines a new metric on X , called the n-Bowen metric, or simply Bowen metric. When
f is uniformly continuous, the metric d n

f is equivalent to d . The (ϵ,n)-Bowen ball is the

ball in d n
f centered at X of radius ϵ or, equivalently, the following set:

B n
f (x,ϵ) =

n−1⋂
i=0

f −i
(
B( f i (x),ϵ)

)
.

Let N f ,K (ϵ,n) denote the minimal number of (ϵ,n)-Bowen balls that cover a compact
set K ⊂ X . Note that N f ,K (ϵ,n) <∞ when f is uniformly continuous.

Let S f ,K (ϵ,n) be the maximal number of disjoint (ϵ,n)-Bowen balls that can be
arranged with centers in k, where all the centers of such a collection of Bowen balls
form a maximal (ϵ,n)-(Bowen) separating set.
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The following inequalities are important in establishing that a well-defined invariant
exists. They are used even in the usual definition of entropy (see, e.g., [21, Section 3.1.b])

S f ,K (ϵ,n) ≤ N f ,K (ϵ,n)

N f ,K (2ϵ,n) ≤ S f ,K (ϵ,n).
(2.1)

Note that inequalities (2.1) still hold when f is not continuous, since d n
f is still a met-

ric in this case. Uniform continuity is usually used to guarantee the d n
f is equivalent

to d .

Definition 2.1. A scale {aχ} is a family of increasing functions,

aχ : Z>0 →R>0

indexed by χ ∈R≥0, such that if χ<χ′ then aχ = o(aχ′ ).

Notation. In subscripts, aχ is used to indicate the scale chosen beforehand, and χ is
used to indicate that the quantity depends on the value of the parameter χ at the given
scale {aχ}.

We think of a scale as a family of functions indexed byχ that describe the orbit growth.
The corresponding slow entropy h means that the orbits grow in time as the function ah .
If the slow entropy with respect to a given scale is zero (resp. infinity) then, in time n the
orbits grow slower (resp. faster) than the sequence {ah(n)}n∈Z>0 for all h ∈R+.
Example 2.2.

(1) At exponential scale aχ(n) = eχn , we will show, in Theorem 3.3, that the topolog-
ical slow entropy (similarly, for metric slow entropy and semitopological slow
entropy) and the classical topological entropy are equal.

(2) At polynomial scale aχ(n) = nχ, the slow topological entropy is often called poly-
nomial topological entropy. Similar for other scales.

(3) Another example is the logarithmic scale aχ(n) = n(logn)χ.

These scales have been used, for example, in [17, Theorem 1.7], where it was shown
that quasi-unipotent flows have positive polynomial entropy. Previously, [16, Theo-
rems 1.1 and 1.2] showed that the Kochergin flow has positive polynomial entropy, and
the Arnol’d flow has positive logarithmic entropy.

We define

δN
f ,K ,χ(ϵ) = limsup

n→∞
N f ,K (ϵ,n)

aχ(n)
,

and

δS
f ,K ,χ(ϵ) = limsup

n→∞
S f ,K (ϵ,n)

aχ(n)
.

Definition 2.3. The slow topological entropy of f for the scale aχ is

htop,aχ ( f ) = sup
K

lim
ϵ→0

(
sup

{
χ : δN

f ,K ,χ(ϵ) > 0
})

= sup
K

lim
ϵ→0

(
sup

{
χ : δS

f ,K ,χ(ϵ) > 0
})

.

Here, the supremum is taken over all compact sets k.

Note that this is well-defined by inequalities (2.1). Further, one may show that the
innermost supremum is decreasing in ϵ, so the limit exists as ϵ→ 0.
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Remark 2.4. We index the family of scales (aχ) by the non-negative reals. When tak-
ing the supremum over some property P of χ, it can happen that the set {χ : P (χ) holds}
is empty. In such a case, we use the convention that the supremum is zero. The set{
χ : δN

f ,K ,χ(ϵ) > 0
}

is an interval that starts at zero. However, the point χ̂ = sup
{
χ :

δN
f ,K ,χ(ϵ) > 0

}
may or may not belong to the interval. All this follows because if χ > χ̂,

then by definition we have χ ̸∈ {
χ : δN

f ,K ,χ(ϵ) > 0
}
; if χ < χ̂, again by definition we have

γ ∈ (χ, χ̂) such that δN
f ,K ,γ > 0, and thus

limsup
n→∞

N f ,K (ϵ,n)

aχ(n)
= limsup

n→∞
N f ,K (ϵ,n)

aγ(n)
· aγ(n)

aχ(n)

≥ limsup
n→∞

N f ,K (ϵ,n)

aγ(n)
> 0

since aχ(n) = o(aγ(n)).

In conclusion,
{
χ : δN

f ,K ,χ(ϵ) > 0
}

is of the form [0, χ̂) or [0, χ̂].

Remark 2.5. While many systems on compact metric spaces are continuous, there are
certain natural systems which have discontinuities appearing. In this paper we treat
the case of 3-IETs, whose discontinuities appear naturally when considering first return
maps for Poincaré sections of flows. Crucially, it is important to note that it still makes
sense to consider topological entropy for such systems, but the topological entropy may
now depend on the choice of metric on X .

2.2. Metric slow entropy. For a probability measure-preserving system (X ,µ, f ,B),
consider a finite measurable partition P = {P1, . . . ,Pk }. We call each set Pi an atom of
P . Note that every x ∈ X defines a coding sequence (xs ) := (xs )s∈Z≥0 , where xs = j if
f s (x) ∈ P j . For any x, y ∈ X , the Hamming distance with respect to the partition P is the
quantity

d
n
f ,P (x, y) = 1− |{0 ≤ s ≤ n −1 : xs = ys }|

n
,

where | · | is the counting measure. The number d
n
f ,P (x, y) is the proportion of times for

which the orbits of x and y lie in different atoms of the partition P up to time n.
For n ≥ 0 and ϵ> 0, the (ϵ,n)-Hamming ball centered at x ∈ X is the set

B n
f ,P (x,ϵ) = {y ∈ X : d

n
f ,P (x, y) < ϵ}.

Next, F represents a finite subset of X , and define the number

S f ,P (ϵ,n) = min

{
card(F ) :µ

( ⋃
x∈F

B n
f ,P (x,ϵ)

)
> 1−ϵ

}
.

For a given scale aχ, we define

δS
f ,P ,χ(ϵ) = limsup

n→∞
S f ,P (ϵ,n)

aχ(n)
,

and the slow metric entropy for the partition P is

hµ,aχ,P ( f ) = lim
ϵ→0

(
sup

{
χ : δS

f ,P ,χ(ϵ) > 0
})

.

Definition 2.6. The slow metric entropy of f with respect to the scale aχ is defined as

hµ,aχ ( f ) = sup
P

hµ,aχ,P ( f ).

Here the supremum is taken over all finite measurable partitions of X .
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2.3. Semi-topological slow entropy. A notion between topological and metric entropy
can be obtained when a natural metric and measure are linked. Let

Ssemi, f (ϵ,n) = min

{
card(F ) :µ

( ⋃
x∈F

B n
f (x,ϵ)

)
> 1−ϵ

}
.

We similarly let δS
semi, f ,χ(ϵ) = limsup

n→∞
Ssemi, f (ϵ,n)

aχ(n)
.

Definition 2.7. The semi-topological slow entropy of f with respect to µ is

hsemi,µ,aχ ( f ) = limsup
ϵ→0

(
sup
χ

{
χ : δS

semi, f ,χ(ϵ) > 0
})

.

3. Slow entropy as other growth invariants

The slow entropy invariants we have defined are in fact generalizations of the stan-
dard classification tools. We describe the connections here.

3.1. Classical entropy as slow entropy. Throughout, we assume that (X ,d) is a metric
space, µ is a probability measure on (X ,B), where B is the Borelσ-algebra of (X ,d), and
the f : X → X is a µ-preserving transformation.

Definition 3.1. The (classical) topological entropy htop( f ) is

(3.1) htop( f ) = sup
K

lim
ϵ→ 0

limsup
n→∞

log(N f ,K (ϵ,n))

n

We refer to the reader to [21, Section 3.1.b] or [4] for an alternative definition using
S f ,K (ϵ,n), and a discussion on how the classical topological entropy does not depend on
the choice of metric d determining the topology when X is compact and f is continuous.

Definition 3.2. The (classical) metric entropy hµ( f ) is defined as

(3.2) hµ( f ) = sup
P

hµ,P ( f ),

where the supremum is taken over all finite measurable partitions P and

(3.3) hµ,P ( f ) = lim
n→∞

1

n
Hµ

(
n−1∨
i=0

f −i (P )

)
.

In Equation (3.3), for any measurable partition P ,

Hµ(P ) := ∑
P∈P

−µ(P ) log(µ(P )).

We have the following well-known theorem in the literature that very few authors
proved.

Theorem 3.3 (Exponential scales in slow entropy). Let aχ(n) = eχn and µ be an ergodic
probability measure. Then

hµ,aχ ( f ) = hsemi,µ,aχ = hµ( f ) and htop,aχ ( f ) = htop( f ).

Proof. To prove that htop,aχ = htop, we claim that for any compact set k and ϵ̂> 0,

(3.4) sup
{
χ : δN

f ,K ,χ(ϵ̂) > 0
}= limsup

n→∞
log(N f ,K (ϵ̂,n))

n
.
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First of all, limsup
log(N f ,K (ϵ̂,n))

n =∞, is equivalent to: there exists ni →∞ such that for

all M ,γ> 0, there exists n∗, such that if ni > n∗, then
log(N f ,K (ϵ̂,ni ))

ni
> M + log(1+γ). This

is equivalent to
N f ,K (ϵ̂,ni )

eMni
> (1+γ)ni for all ni > n∗. Remember that

(3.5) δN
f ,K ,χ(ϵ̂) = limsup

n→∞
N f ,K (ϵ̂,n)

eχn .

So, δN
f ,K ,M (ϵ̂) =∞. Since M > 0 is arbitrary; we conclude that it is equivalent that the left

side in Equation (3.4) is equal to ∞.

Now, assume that χ̂= limsupn→∞
log(N f ,K (ϵ̂,n))

n <∞.
If χ> χ̂, then the expression in Equation (3.5) is zero, because

(3.6) limsup
n→∞

N f ,K (ϵ̂,n)

eχn = limsup
n→∞

N f ,K (ϵ̂,n)

e χ̂n
limsup

n→∞
e(χ̂−χ)n = 0.

This implies that

(3.7) χ̂≥ sup
{
χ : δN

f ,K ,χ(ϵ̂) > 0
}
.

If χ̂ = 0, Equation (3.7) is an equality, and it proves Equation (3.4). If χ̂ > 0, let χ < χ̂,

and ni →∞ any sequence of positive integers such that
N f ,K (ϵ̂,ni )

eχ̂ni
≥ c > 0, for a positive

constant c. Then, we have that

(3.8)
N f ,K (ϵ̂,ni )

eχni
e(χ−χ̂)ni ≥ c.

Since e(χ−χ̂)ni → 0, then
N f ,K (ϵ̂,ni )

eχni →∞. And then Equation (3.5) with χ< χ̂ is equal to
∞. This implies that

(3.9) χ̂= sup
{
χ : δN

f ,K ,χ(ϵ̂) > 0
}
.

Finally, to prove that htop,aχ = htop, assume that htop,aχ and htop are finite. We focus
only on the case when both entropies are finite and leave the case of infinite entropy to
the reader.

It is enough to prove that for arbitrary ϵ> 0, then
∣∣∣htop,aχ −htop

∣∣∣< ϵ.

By definition of the entropies, and by triangle inequality, there exists K ⊂ X compact
and ϵ̂> 0 sufficiently small, such that∣∣∣htop,aχ −htop

∣∣∣≤ ∣∣∣htop,aχ − sup
{
χ : δN

f ,K ,χ(ϵ̂) > 0
}∣∣∣

+
∣∣∣∣htop − limsup

n→∞
log(N f ,K (ϵ̂,n))

n

∣∣∣∣
+

∣∣∣∣sup{χ : δN
f ,K ,χ(ϵ̂) > 0}− limsup

n→∞
log(N f ,K (ϵ̂,n))

n

∣∣∣∣
< 2

3
ϵ+

∣∣∣∣sup{χ : δN
f ,K ,χ(ϵ̂) > 0}− limsup

n→∞
log(N f ,K (ϵ̂,n))

n

∣∣∣∣ .

By Equation (3.4), ∣∣∣htop,aχ −htop

∣∣∣< 2

3
ϵ.

To prove that hµ,aχ ( f ) = hµ( f ). First, assume that hµ( f ) is finite. Let P = {P1, . . . ,Pk }
be a finite measurable partition with hµ( f ,P ) = h. By Shannon–McMillan–Breiman
Theorem [32, Theorem 9.3.1], for the partition P we have that

− 1

n
logµ

(
[x]n−1

0

)→ h µ-a.e.
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We use [x]n−1
0 to denote the atom in

n−1∨
i=0

T −i P that contains X . Let ϵ> 0. For n be large

enough, we get

µ

({
x :

∣∣∣− 1

n
logµ

(
[x]n−1

0

)−h
∣∣∣< ϵ})

> 1−ϵ.

This implies:

(3.10) µ
({

x : e−n(h+ϵ) <µ(
[x]n−1

0

)< e−n(h−ϵ)
})

> 1−ϵ.

Note for any y ∈ [x]n−1
0 , y j = x j for any 0 ≤ j ≤ n − 1, therefore S f ,P (ϵ,n) ≤ en(h+ϵ).

Hence, when aχ(n) = eχn , hµ,aχ,P ( f ) ≤ h. Moreover, B n
f ,P (x,ϵ) is covered by at most(

n

⌊nϵ⌋

)
(⌊nϵ⌋k ) atoms in

n−1∨
i=0

T −i P . This is because for any y ∈ B n
f ,P (x,ϵ), {xi }n−1

i=0 and

{yi }n−1
i=0 differ in at most ⌊nϵ⌋ positions, each one has at most k choices. From Equa-

tion (3.10), each atom is of measure at least e−n(h+ϵ), and they cover space of measure at
least 1−ϵ. Hence, S f ,P (ϵ,n) ≥ (1−ϵ)en(h−O (ϵ)) since k is a fixed constant and(

n

nϵ

)
≈ en(ϵ ln(ϵ)+(1−ϵ) log(1−ϵ))/

√
2πnϵ(1−ϵ)

when n is large enough. Therefore, hµ,aχ,P ( f ) ≥ h, proving the equality hµ,P ( f ) =
hµ,aχ,P ( f ). By definition, sup

P
hµ,P ( f ) = hµ( f ) and hµ,aχ ( f ) = sup

P
hµ,aχ,P ( f ), these give

hµ( f ) = hµ,aχ ( f ). If hµ( f ) = ∞, then for any finite partition P with finite entropy, we
still have hµ,P ( f ) = hµ,aχ,P ( f ), and the result follows by taking the supremum over
a sequence of partitions with finite entropy that goes to infinity. Therefore, hµ( f ) =
hµ,aχ ( f ) =∞.

We omit the proof of hsemi,µ,aχ = hµ and refer the reader to [18, Theorem (I.I)]. □

3.2. Shift complexity as slow entropy. Consider a finite alphabet A = {1, . . . ,n } and the
space

Ω=A Z = {
ω= (. . . ,ω−2,ω−1,ω0,ω1,ω2, . . . ) :ωi ∈A for all i ∈Z}

.

The setΩ is called the shift space on n symbols and has a canonical dynamical system
attached, the shift map σ :Ω→Ω defined by

σ(ω)n :=ωn+1.

In other words, the sequence σ(ω) is the same as ω, except that the 0 position of the
sequence is shifted to the right by one index. A subshift is a closed σ-invariant set X ,
and the language of X is the set

L = {
(α0, . . . ,αm) : there exists ω ∈ X with ωi =αi for all i = 0, . . . ,m

}
.

That is, L contains all of the finite words in X . To clarify the dynamical system, we
let σX denote the restriction of σ to X . One may consider the (language) complexity
of X , which counts the growth rate of L . That is, if we let Lm denote the words in the
language of length m, we consider the function

pn(X ) = #Lm .

The language complexity has been studied carefully for a variety of subshifts, and we
will not provide an exhaustive survey here, but some recent works on the complexity of
subshifts and their applications include [8, 7, 9, 6, 25].

Fix the following metric onΩ (and correspondingly the induced metric on X ) as

d(ω,η) = 2−k , where k = inf{ i ≥ 0 :ωi ̸= ηi or ω−i ̸= η−i } .
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We can use the complexity to compute the topological slow entropy. Recall the defi-
nition of N f ,Ω(ϵ,n) as given at the start of Section 2.1

Proposition 3.4. If σX : X → X is a subshift, then

N f ,Ω(2−(k−1),n) = p2k+1+n(X ).

Proof. Observe that by definition of the metric, d(ω,η) < 2−(k−1) if and only if they agree
on the indices ranging from −k up to k. Hence d(σℓ(ω),σℓ(η)) < 2−(k−1) if and only
if ω and η agree on the indices ranging from ℓ− k to ℓ+ k. Therefore, σ and η are
2−(k−1)-close in the metric d n

σ if and only if they agree on the indices ranging from −k
to n +k. Since there are 2k +1+n such indices, the follows that we for each finite word
of length 2k +1+n, we must choose a representative to cover the corresponding Bowen
ball: every such word has an element which must belong to a Bowen cover, and each
Bowen ball must be centered at some point and hence can only cover one such word.
The result follows. □

This yields the immediate corollary, which shows that in shift spaces, the topological
slow entropy captures the growth rate of the complexity function.

Corollary 3.5. If aχ is a scale, σX : X → X is a subshift, and

limsup
n→∞

pn(X )

aχ(n)
=

{ ∞ if χ<χ0,
0 if χ>χ0,

then htop,aχ (σX ) =χ0.

4. Structural theorems

4.1. Slow Goodwyn’s Theorem. The following result states a relation among the differ-
ent entropies that we defined in Section 2. In the setting of classical entropy theory, this
is part of the variational principle, due to Goodwyn [14]. It states that under general cir-
cumstances, the metric entropy is bounded above by the semi-topological entropy and
that the topological entropy is the largest of the previous two.

Theorem 4.1 (Goodwyn). Let f : X → X be a measurable transformation of a compact
metric space, and M f (X ) denote the space of f -invariant Borel probability measures
on X . Then for any measure µ ∈M f (X )

(4.1) hµ,aχ ( f ) ≤ hsemi,µ,aχ( f ) ≤ htop,aχ ( f ).

Remark 4.2. As in Remark 2.5, we note that continuity is not required for this theorem.

To prove this theorem, we need an auxiliary result on the existence of certain parti-
tions. In this result, the remarkable part is that the atoms of the partitions are small and
their boundary is of measure zero.

Lemma 4.3. Let (X ,d) be a compact metric space with a probability measure µ. Then
for every δ > 0, there exists a partition P = {P1, . . . ,Pk } such that diam(Pi ) < δ for every
i = 1, . . . ,k and if Xϵ = {x ∈ X : d(x,∂P ) < ϵ}, limϵ→0µ(Xϵ) = 0, where

d(x,∂P ) := max
P∈P

d(x,∂P ).

Furthermore, if x, y ∈ X belong to different atoms of the partition and x, y ̸∈ Xϵ, then
d(x, y) ≥ ϵ.
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Proof of Theorem 4.1. We will start by proving that hµ,aχ ≤ hsemi,µ,aχ . Let ϵ > 0. Let
Pϵ be the partition in Lemma 4.3 for δ = ϵ, so each set in Pϵ has diameter at most ϵ.
From Lemma 4.3, we conclude that the open set X ϵ̂ has µ measure at most ϵ for some
ϵ̂ < ϵ, and if x, y ∈ X ϵ̂, d(x, y) < ϵ̂, then [x]Pϵ = [y]Pϵ . We have that the compact set
K ϵ̂ := X \X ϵ̂ has µ measure at least 1−ϵ, and satisfies that for any x ∈ K ϵ̂, we must have

(4.2) B n
f ,Pϵ

(x,ϵ) ⊃ B n
f (x, ϵ̂).

By definition of S f ,Pϵ
(ϵ,n), for every n, we may choose Fn ⊂ Kϵ, such that card(Fn) =

S f ,Pϵ
(ϵ,n) and

µ

( ⋃
x∈Fn

B n
f ,Pϵ

(x,ϵ)

)
> 1−ϵ.

Using Equation (4.2), we see that

S f ,Pϵ
(ϵ,n) ≤ Ssemi, f (ϵ̂,n) = min{card(H) :µ

( ⋃
x∈H

B n
f (x, ϵ̂)

)
> 1− ϵ̂},

and

δS
f ,P ,χ(ϵ) ≤ δS

semi, f ,χ(ϵ̂).

Since ϵ→ 0 implies that ϵ̂→ 0, it follows that

(4.3) lim
ϵ→0

(
sup
χ

{
δS

f ,P ,χ(ϵ) > 0
})

≤ lim
ϵ̂→0

(
sup
χ

{
δS

semi, f ,χ(ϵ̂) > 0
})

.

What we have accomplished with the Equation (4.3) is that hµ,aχ,Pδ
≤ hsemi,µ,aχ , for a

generating partition Pδ with atoms of diameter at mostδ>0. The result follows from [22,
Proposition 1] where the authors proved that the supremum in hµ,aχ = supP hµ,aχ,P can
be replaced by a limit limm→∞ hµ,aχ,Pm over a sequence of generating partitions {Pm}.

Now we prove the inequality hsemi,µ,aχ ≤ htop,aχ , this part does not require continu-
ity and follows directly from definitions. Notice that in Definition 2.3, we can drop the
supremum over compact subsets of X and substitute K = X . Observe that for all ϵ > 0,
and all n sufficiently large:

Ssemi, f (ϵ,n) ≤ N f ,χ(ϵ,n).

This completes the proof of the inequalities in Equation (4.1). □

Proof of Lemma 4.3. Since µ is finite, the set X ′ of atoms of µ is at most countable. For
δ> 0, let 0 < δ′ < δ/2 be such that if B is a ball with center in an atom and radius δ′, then
µ(∂B) = 0. Similarly, compact set X \

⋃
x∈X ′ B(x,δ′) has a finite covering of balls of radius

at most δ/2, and the boundary of these balls has measure zero. Hence, there exists a
finite covering of balls B1, . . . ,Bk with radius at most δ/2 and µ(∂B j ) = 0, for 1 ≤ j ≤ k.

The partition P is constructed by recursion: We put P1 = B1, and P j = B j \
⋃ j−1

i=1 Bi for
2 ≤ j ≤ k.

It follows that limϵ→0µ(Xϵ) = µ(
⋃k

i=1∂Pi ) = 0, because the probability measure is

outer regular and
⋃k

i=1∂Pi ⊂⋃k
i=1∂Bi .

To prove the final observation, let x, y ̸∈ Xϵ, i.e., d(x,
⋃k

i=1∂Pi ) > ϵ and d(y,
⋃k

i=1∂Pi ) >
ϵ. If there are 1 ≤ i < j ≤ k, with x ∈ Pi , and y ∈ P j , then

d(x, y) > d(x,∂Bi )+d(y,∂Bi ) ≥ 2ϵ. □
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4.2. Homogeneous measures and slow entropy. The following result is of a classifica-
tion type. It states that for a class of systems, both the semi-topological and topological
entropies are the same. In other words, the inequality on the right in Equation (4.1) is in
fact, an equality.

Definition 4.4. Let f : X → X be a measurable transformation. A measure µ is called
homogeneous with respect to f , if for every ϵ > 0 there exists c > 0 such that for any
x, y ∈ X , and every n ≥ n0, for some n0 sufficiently large,

1

c
≤
µ(B n

f (x,ϵ))

µ(B n
f (y,ϵ))

< c.

Theorem 4.5. Suppose that f : X → X is a measurable transformation, X is compact, and
µ is homogeneous. Then

htop,aχ ( f ) = hsemi,µ,aχ ( f ) = lim
ϵ→0

(
sup{χ : C f ,χ(ϵ) > 0}

)
where

C f ,χ(ϵ) = limsup
n→∞

1

aχ(n) ·µ(B n
f (x,ϵ))

.

Proof. Let kµ,aχ ( f ) be the quantity lim
ϵ→0

(
sup{χ : C f ,χ(ϵ) > 0}

)
.

First we show that htop,aχ ( f ) = kµ,aχ ( f ). Given a compact set k, by locally compact-
ness of X , we can choose a sufficiently small ϵ and an open set U such that B(K ,ϵ) ⊂U .
Denote χ̂ := sup

{
χ : δS

f ,K ,χ(ϵ) > 0
}
.

On the one hand, fix a set E such that for all distinct x, y ∈ E we have B n
f (x,ϵ) ∩

B n
f (y,ϵ) = ∅, and thus ∪y∈E B n

f (y,ϵ) ⊂ U is a disjoint union. Since µ is homogeneous,

we can choose c > 0 such that for any x, y ∈ X ,

µ
(
B n

f (x,ϵ)
)
≤ cµ

(
B n

f (y,ϵ)
)

.

Summing over y ∈ E we obtain

µ
(
B n

f (x,ϵ)
)

card(E) ≤ c
∑
y∈E

µ
(
B n

f (y,ϵ)
)
≤ cµ(U ) ≤ c,

which implies that for any x ∈ X we have

µ
(
B n

f (x,ϵ)
)
·S f ,K (ϵ,n) ≤ c,

therefore

0 < 1

c
≤ limsup

n→∞
1

µ(B n
f (x,ϵ)) ·S f ,K (ϵ,n)

.

We will use the following, although we do not prove it. This follows from the definitions
of lim and limsup.

Claim. For two sequences {an} and {bn}, if lim
n→∞an exists and it is positive and limsup

n→∞
bn

is positive, then
limsup

n→∞
an ·bn = lim

n→∞an limsup
n→∞

bn .

For χ< χ̂, take χ<χ′ < χ̂, using the claim, we have that

C f ,χ(ϵ) = limsup
n→∞

1

aχ(n) ·µ(B n
f (x,ϵ))

= limsup
n→∞

S f ,K (ϵ,n)

aχ′ (n)
· aχ′ (n)

aχ(n)
· 1

µ(B n
f (x,ϵ)) ·S f ,K (ϵ,n)

=∞.
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Denote kµ,aχ,ϵ( f ) := sup{χ : C f ,χ(ϵ) > 0} and

htop,aχ,K ,ϵ( f ) := sup
{
χ : δS

f ,K ,χ(ϵ) > 0
}

.

It follows that for any χ< χ̂ we have

kµ,aχ,ϵ( f ) ≥χ.

By taking supremum over χ< χ̂ on both sides we obtain

kµ,aχ,ϵ( f ) ≥ χ̂= htop,aχ,K ,ϵ( f ).

Since both k and ϵ are arbitrary, it is clear that

kµ,aχ ( f ) ≥ htop,aχ ( f ).

On the other hand, assume µ(K ) > 0. Since µ is homogeneous, we have

µ
(
B n

f (x,ϵ)
)
≥ 1

c
µ

(
B n

f (y,ϵ)
)

.(4.4)

Fix a finite covering
{

B n
f (x,ϵ) : x ∈ F

}
of k consisting of (n,ϵ)-Bowen balls so that⋃

y∈F
B n

f (y,ϵ) ⊃ K .

By summing Equation (4.4) over y ∈ F , we obtain

µ
(
B n

f (x,ϵ)
)

card(F ) ≥ 1

c
· ∑

y∈F
µ

(
B n

f (y,ϵ)
)
≥ 1

c
µ(K ),

which implies that for any x ∈ X we have

µ
(
B n

f (x,ϵ)
)

N f ,K (ϵ,n) ≥ 1

c
µ(K ).

For χ> χ̂ we have

C f ,χ(ϵ) = limsup
n→∞

1

aχ(n) ·µ(B n
f (x,ϵ))

= limsup
n→∞

N f ,K (ϵ,n)

aχ̂(n)
· aχ̂(n)

aχ(n)
· 1

µ(B n
f (x,ϵ))N f ,K (ϵ,n)

= 0,

and thus kµ,aχ,ϵ( f ) ≤χ for any χ> χ̂. It follows that kµ,aχ,ϵ( f ) ≤ χ̂= htop,aχ,K ,ϵ( f ) and thus
kµ,aχ ( f ) ≤ htop,aχ ( f ). Now we can conclude that htop,aχ ( f ) = kµ,aχ ( f ).

Secondly, we show that hsemi,aχ ( f ) ≥ kµ,aχ ( f ). Given ϵ> 0, define

χ̃ := sup
{
χ : δS

semi, f ,χ(ϵ) > 0
}

,

in which case we have δS
semi, f ,χ̃(ϵ) = limsup

n→∞
Ssemi, f (ϵ,n)

aχ̃(n)
, where

Ssemi, f (ϵ,n) = min

{
card(F ) :µ

( ⋃
x∈F

B n
f (x,ϵ)

)
> 1−ϵ

}
.

Consider a finite measurable set F such that µ
(⋃

x∈F B n
f (x,ϵ)

)
> 1−ϵ. Since µ is homoge-

neous, then there exists c > 0 such that µ
(
B n

f (x,ϵ)
)
≥ 1

c µ
(
B n

f (y,ϵ)
)

. Summing over y ∈ F

we obtain

µ
(
B n

f (x,ϵ)
)

card(F ) ≥ ∑
y∈F

1

c
µ

(
B n

f (y,ϵ)
)
≥ 1

c
µ

( ⋃
y∈F

B n
f (y,ϵ)

)
> 1−ϵ

c
.
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Since F is arbitrary, we have µ
(
B n

f (x,ϵ)
)

Ssemi, f (ϵ,n) ≥ 1−ϵ
c . Hence for χ> χ̃

C f ,χ(ϵ) = limsup
n→∞

1

aχ(n) ·µ
(
B n

f (x,ϵ)
)

= limsup
n→∞

aχ̃(n)

aχ(n)
· Ssemi, f (ϵ,n)

aχ̃(n)
· 1

µ
(
B n

f (x,ϵ)
)
·Ssemi, f (ϵ,n)

≤ c

1−ϵ lim
n→∞

aχ̃(n)

aχ(n)
limsup

n→∞
Ssemi, f (ϵ,n)

aχ̃(n)
= 0.

Letting ϵ→ 0, as in the first part, we obtain that kµ,aχ ( f ) ≤ hsemi,aχ ( f ).
Finally, by Theorem 4.1 we have hsemi,aχ ( f ) ≤ htop,aχ , we proved that htop,aχ ( f ) =

kµ,aχ ( f ) in the first part. Thus the Theorem 4.5 follows. □

5. Ferenczi’s Theorem

Here we will present the proof of [11, Proposition 3], which provides a characteriza-
tion of Kronecker systems via slow entropy. This section is purely expository, we include
it to provide a more complete account of the current state of the theory.

Definition 5.1. A topological dynamical system is called a Kronecker system if it is iso-
morphic to a group rotation on a compact abelian metrizable group.

Theorem 5.2 ([11]). Let X = (X ,µ, f ,M ) be a probability measure preserving system.
Then, X is isomorphic to the Kronecker system if and only if hµ,aχ ( f ) = 0 for all scales aχ.

For the second part of the proof of Theorem 5.2, we need the following result.

Lemma 5.3. If X = (X ,µ, f ,M ) is not isomorphic to a Kronecker system, then we can
find a partition P = {P1,P2...,Pl } and ϵ0 > 0 such that, d( f n(P ),P ) > ϵ0 for every n in a
density 1 subset D ⊆N.

For two partitions P = {P1, . . . ,Pn} and Q = {Q1, . . . ,Qn}, we denote the partition dis-
tance, between P and Q by

d(P ,Q) :=
n∑

i=1
µ(Pi∆Qi ).

Proof of Theorem 5.2. If X is isomorphic to the Kronecker system, we can assume f is an
isometry and X is a compact metric space with metric d . Let δ > 0 be a fixed constant,
and let P := Pδ be a measurable partition of X described in Lemma 4.3. Given ϵ > 0,
we want to show S f ,P (ϵ,n) ≤Cϵ when n is large enough where Cϵ is a constant indepen-
dent of n. Let δ(ϵ) be a constant depending only on ϵ, define Xϵ = {x ∈ X : d(x,∂P ) <
δ(ϵ) for some P ∈P }. By taking ϵ small enough, µ(Xϵ) < ϵ. Let Cϵ be the minimal num-
ber of balls of radius δ(ϵ)/2 covering X . Now, for every n large enough

(5.1) µ

({
x :

∣∣∣∣∣ 1

n

n−1∑
i=0

1Xϵ ( f i (x))

∣∣∣∣∣< ϵ
})

> 1−ϵ.

Therefore, by Equation (5.1), the set of indices

E n
x =

{
0 ≤ j < n : f j (x) ∈ X c

ϵ

}
satisfies that |E n

x | > n(1−ϵ) for X in a set with measure at least 1−ϵ. For such X , suppose y
is in the same ball of radius δ(ϵ)/2 containing X . Then, when j ∈ E n

x , f j x and f j y are
in the same atom of partition P because f is an isometry. Therefore, S f ,P (ϵ,n) ≤ Cϵ

because each Hamming ball contains a Bowen ball of radius δ(ϵ)/2. Since the Bowen
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balls are exactly the balls in the metric d , S f ,P (ϵ,n) is bounded by a constant depending
only on P and ϵ. Consequently, any Kronecker system has zero entropy at all scales.

To prove the other direction, we need Lemma 5.3. Assume hµ,aχ ( f )=0 for all scales aχ,
we claim that

liminf
n→∞ S f ,P (ϵ,n) ≤Cϵ

for any fixed measurable partition P and given ϵ. Suppose not, then there exists a mea-
surable partition P0 and ϵ0 s.t. for any k there exists nk satisfying S f ,P0 (ϵ,n) > k for
every ϵ < ϵ0 and nk < n. Choose aχ(n) to be some value between k and k + 1 when
nk ≤ n < nk+1. This implies hµ,aχ,P0 ( f ) > 0, which is a contradiction.

If the system X is not isomorphic to a Kronecker system, by applying Lemma 5.3 we
can find a measurable partition P = {P1, ...,Pl }. Fixed an arbitrarily large n, there exists
a constant C s.t. S f ,P (ϵ2, N ) ≤C . By using M ≤C Hamming balls Bi = B N

f ,P (xi ,ϵ2) where

1 ≤ i ≤ M , one can cover at least 1−ϵ2 space of X . Consider the space

(X × {0,1, . . . , N −1},µ×ν),

where ν(E) = 1
N × cardinality of E . Define a measurable function on X × {0,1, . . . , N −1}

by

g (x,n) =


1 if there exists I s.t. x ∈ Bi and f n(x) and f n(xi ) are

in the same atom

0 otherwise

By definition of Hamming balls,∫
g dµ×ν> (1−ϵ2)(1−ϵ2).

Now, there exists a subset E of {0,1, . . . , N−1} with cardinality larger than N (1−4ϵ) satisfy-
ing for every n ∈ E ,

∫
g dµ> 1−ϵ/2. This is because we can get

∫
g dν< 1−2ϵ2 otherwise.

We claim that we can find a positive density subset λ of N such that for every n ∈Λ,
d( f n(P ),P ) < ϵ, which is a contradiction to Lemma 5.3. Note that

d( f n(P ), f j (P )) =
∫

X
min{|xn −x j |,1}dµ(x)

for every n and j . Moreover, for each n, (x1
n , . . . , xM

n ) has at most l M choices. Therefore,
for every n ∈ E , there exists an integer m(n), s.t. xi

n = xi
m(n) for every 1 ≤ i ≤ M . Hence,

d( f n(P ), f m(n)(P )) < ϵ because the set satisfying there exists I s.t. x ∈ Bi and xi
n = xn

has measure larger than 1−ϵ for every n ∈ E . From the pigeonhole principle, there exists
a subsetΛN of {0,1, . . . , N−1} with cardinality at least N (1−4ϵ)/l M such that for every n ∈
ΛN , d( f n(P ), f m(P )) < ϵ for some m ∈ {0,1, . . . , N −1}. Since the metric is f -invariant,
we can conclude the result. □

Definition 5.4. If X = (X ,µ, f ,M ) is a measure preserving system, we say a function
g ∈ L2(X ,µ) is almost periodic if {U n

f g : n ∈Z} is a precompact set in L2(X ,µ).

Proof of Lemma 5.3. We give a sketch of proof here. If the system is isomorphic to a
Kronecker system, then g is almost periodic for any g ∈ L2(X ). Suppose X is not iso-
morphic to the Kronecker system, then there exists a non-zero measurable function g
with mean 0 such that g is orthogonal to every almost periodic function. Then, there is
a density 1 subset d ofN such that

lim
n→∞,n∈D

〈U n
f (g ), g 〉 = 0.
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Assume w.l.o.g. that ||g || = 1, given ϵ = 1
100 , there is a simple function h =

l∑
i=1

ci1Ai such

that ||g −h|| ≤ ϵ/4. Therefore, when n is large enough,∣∣〈U n
f (h),h〉∣∣≤ ϵ.

Choose partition P = {A1, ..., Al }, then there exists ϵ0 < min{µ(A1),...,µ(Al )}
100 such that

d( f n(P ),P ) > ϵ0 for n ∈ D. □

6. Slow versus exponential entropy

6.1. Sturmian subshifts. For more information about Sturmian systems, we refer the
reader to [12, Chapter 6].

Definition 6.1. A sequence u ∈ {0,1}N (∈ {0,1}Z) is a (bi-infinite) Sturmian sequence if for
every n ≥ 1, the number of words of length n that appear in u is equal to

pn(u) = n +1,

and it is not eventually periodic.

Consider f : {0,1}Z→ {0,1}Z, the shift map defined as w = f (v), wi = vi+1.

Definition 6.2. A Sturmian system (Xu , f ) for a bi-infinite Sturmian sequence u is the

shift map f on Xu = {
f k (u) : k ∈Z}

.

Theorem 6.3. Any Sturmian system (Xu , f ) is measurably equivalent to an irrational ro-
tation (R/Z,Rθ).

Sketch of the proof with ideas in [12, Chapter 6] . Any initial point β ∈ R/Z, generates a
Sturmian sequence v = (vi ), by taking vi = j if R i

θ
(β) ∈ I j , I0 = [0,1−θ) and I1 = [1−θ,1).

The converse is very elaborate see [12, Sections 6.3 and 6.4]. The idea is that every
v ∈ Xu has a coding (an ,bn). The coefficients (an) are the partial quotients of the con-
tinued fraction expansion of θ. The initial point β is determined by bn ; these are the
coefficients of its Ostrowski expansion. Things are very subtle; for instance, see [12, Ex-
ercise 6.2.13 item 5]. □

Theorem 6.3 combined with Theorem 5.2 implies that Sturmian systems have 0 met-
ric entropy at all scales. The following immediately implies Theorem 1.2:

Theorem 6.4. For any Sturmian system (Xu , f ), we have that

0 = hµ,aχ < hsemi,µ,aχ = htop,aχ = 1,

for the polynomial scale aχ(N ) = Nχ, and the unique f -invariant measure µ.

Proof. Proof of htop,aχ = 1.
This follows from Proposition 3.4 and Corollary 3.5. For Sturmian shifts, we have that

for a fixed integer k > 0,

N f ,Xu (2−(k−1),n) = p2k+n+1(Xu) = 2k +n +2.

Hence,

δ f ,Xu ,χ(2−(k−1)) = limsup
n→∞

N f ,Xu (2−(k−1),n)

nχ

= lim
n→∞

2k +n +2

nχ
=


0 if χ> 1,
1 if χ= 1,
∞ if χ< 1.



Slow entropy and variational dynamical systems 33

For the linear scale aχ(N ) = Nχ,

htop,aχ = lim
ϵ

(
sup

{
χ : δ f ,Xu ,χ(ϵ) > 0

})= 1.

Proof of hsemi,µ,aχ = 1.
Let µ be the invariant probability measure for (Xu , f ). If the sequence u was coded

by the partition P = {P0 = [0,1−θ),P1 = [1−θ,1)}, then for every cylinder set ω ⊂ Xu

defined by a word b0b1 . . .bn−1 ∈ Ln , we must have thatµ(ω) = Leb(P ) for some P ∈P n :=∨n−1
i=0 R−i

θ
P . The atoms in the partition P n have endpoints in{

0,R1−θ(0), . . . ,Rn
1−θ(0)

}
.

Let 1−θ = [0; a1, a2, a3, . . . ] be the continued fraction expansion, and
{ pk

qk

}
the sequence

of best approximants. Writing n = mqk +qk−1 + r with 1 ≤ m ≤ ak+1, and 0 ≤ r < qk . By
the Three Gap Theorem, see [1, Section 3], the measure of the cylinder ω is

(1) ηk := (−1)k (qk (1−θ)− pk ), in which case there are n + 1− qk cylinders of this
measure. These are the smallest gaps.

(2) ηk−1 −mηk . There are r +1 cylinders of this measure.
(3) ηk−1 − (m −1)ηk . There are qk − (r +1) cylinders of this measure. These are the

biggest gaps, and their length is the sum of the lengths of the previous types.

When n = (m +1)qk +qk−1 −1, for 1 ≤ m ≤ ak+1 (r = qk −1), then there are no cylinders
with the length in (3).

If we denote

C (n) := min
{

card(F ) :
∑
ω∈F

µ(ω) > 1−ϵ
}

,

where F is a family of cylinders sets of size n, then for some 0 ≤ l , s,κ ≤ 1 depending
on n,

(6.1) C (n) = n +1− [
κ(n +1−qk )+ s(r +1)+ l (qk − (r +1))

]
,

where

(6.2) κ(n +1−qk )ηk + s(r +1)(ηk−1 −mηk )+ l (qk − (r +1))(ηk−1 − (m −1)ηk ) < ϵ.

Specializing to the case where there are no cylinders of type 3

n = nk = (ak+1 +1)qk +qk−1 −1 = qk+1 +qk −1,

we can substitute l = 0 and r = qk −1 into Equation (6.2) to obtain

−κ> s(r +1)(ηk−1 −ak+1ηk )−ϵ
(n +1−qk )ηk

= sqkηk+1 −ϵ
qk+1

.
(6.3)

In this special case, combining Equation (6.1) and Equation (6.3), we obtain that

C (nk )

nk
= 1+ 1

nk
−κqk+1

nk
− s

qk

nk

> 1+ 1

nk
+ (sqkηk+1 −ϵ)

qk+1ηk

qk+1

nk
− s

qk

nk

= 1+ 1

nk
+ s

qk

nk

(
ηk+1

ηk
−1

)
− ϵ

nkηk
.

(6.4)

Using Khinchin’s inequality (see, for instance, [24, Theorems 9 and 13]),

1

qk+1 +qk
< ηk < 1

qk+1
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and that nk = qk+1 +qk −1, we obtain

(6.5) 1 = 1− lim
k→∞

1

qk+1 +qk
≤ limsup

k→∞
nkηk ≤ 1+ limsup

k→∞
qk

qk+1
<∞.

By Equation (6.4) and Equation (6.5), we have that

δS
semi, f ,1(ϵ) = limsup

n→∞
C (n)

n
≥ limsup

k→∞
C (nk )

nk
≥ 1−o(ϵ).

We conclude that hsemi,µ,aχ = 1 by Equation (4.1) in Theorem 4.1 □

6.2. Large gaps. We thank Scott Schmieding for pointing out the constructions in this
section. Fix the polynomial scale pχ(N ) = Nχ. The following shows that we can achieve
gaps of polynomial size for the variational principle:

Theorem 6.5. For every m ∈N, there exists a uniquely ergodic homeomorphism of a com-
pact metric space f : X → X preserving µ such that hµ,pχ ( f ) = 0, but htop,pχ ( f ) = m.

Proof. Consider finitely many irrational numbers β1, . . . ,βm ∈ (0,1) which are rationally
independent. Then the translation on Tm by the vector v = (β1, . . . ,βm) is uniquely er-
godic, and is isomorphic to the product of the rotations Rβ1 ×·· ·×Rβm .

For each i = 1, . . . ,m, consider the Sturmian subshift σi : Xi → Xi isomorphic to the
rotation Rβi , and let X = X1×·· ·×Xm and f : X → X be the product f =σ1×·· ·×σm . Note
that an element x ∈ X is an m-tuple of infinite words in the symbols 0 and 1. Equiva-
lently, one may consider it as a single infinite word whose entries are m-tuples of 0’s
and 1’s. Therefore, f may be considered a subshift of a shift on 2m symbols. Since a word
is admissible if and only if each of its components are admissible, and each component
may be chosen independently from each corresponding Sturmian language, there are
(n +1)m words of length n in the language of f . Thus, the topological slow entropy at
polynomial scale is m by Corollary 3.5.

On the other hand, we claim that f is uniquely ergodic (in which case f is measurably
isomorphic to Rβ1 ×·· ·×Rβm ). Indeed, given an f -invariant measure µ, it must project
to a σi -invariant measure on each Xi . Since Sturmian subshifts are uniquely ergodic, it
follows that µ is a joining of the circle rotations Rβi . Hence µ must correspond to the
Haar measure. □

Fix the scale aχ(N ) = eNχ
, which we call the stretched exponential scales. Note that

aχ is faster than polynomial scales for all χ > 0, but for χ < 1, the rate aχ is slower than
exponential.

Theorem 6.6. There exists a uniquely ergodic subshift σ : X → X preserving a measure µ
such that hµ,bχ (σ) = 0 for every family of scales bχ, but htop,aχ (σ) = 1.

Theorem 6.6 shows that there are systems that have very large gap between the metric
and topological slow entropies, achieving stretched exponential rates arbitrarily close
to 1.
Remark 6.7. Theorem 6.6 heavily relies on our use of limsup rather than liminf when
defining our slow entropies. When using the liminf definition, the topological slow en-
tropy grows linearly. That is, the growth rate of Nσ,X (ϵ,n) (which is linked to the language
complexity by Proposition 3.4) oscillates between linear and stretched exponential rates.
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Proof of Theorem 6.6. In [26, Theorem 5.15, Proposition 5.23], it is shown that among
transitive subshifts σ : X → X , the following properties (among others) are generic:

• σ is a regular Toeplitz subshift
• For every γ ∈ (0,1), pn := pn(X ) has subsequences satisfying

lim
n→∞

loglog pnk

lognk
= γ.

Since such aσ is a regular Toeplitz subshift, it is uniquely ergodic and measurably iso-
morphic to translation on a compact abelian group [15]. It follows that the metric slow
entropy is 0 at all scales. On the other hand, if 0 < γ < γ′ < γ′′, identify a subsequence

such that limk→∞
loglog pnk

lognk
= γ′′. Then for sufficiently large k,

loglog pnk

lognk
> γ′

loglog pnk > γ′ lognk

log pnk > nγ′
k

pnk > en
γ′
k .

Since γ was aribtrary, it follows that

limsup
n→∞

pn

enγ
=∞

whenever γ ∈ (0,1). On the other hand, when γ = 1, the limsup must be 0 since the
system has 0 topological entropy (since the variational principle holds at exponential
scale, and the system is uniquely ergodic with 0 exponential metric entropy). It follows
that the topological slow entropy at stretched exponential scale is 1 by Corollary 3.5. □

6.3. Denjoy circle transformations. The Sturmian systems considered above can be
realized as invariant sets for transformations of the circle. Indeed, one may build C 1,α

circle diffeomorphisms by starting with an irrational circle rotation and “blowing up” an
orbit by inserting an interval at each point of the orbit. Such examples were first studied
by Denjoy and their construction can be found in [21, Section 12.2]. We characterize
them here:

Definition 6.8. We say that a circle homeomorphism f : S1 → S1 is Denjoy if the rotation
number θ of f is irrational, and there is a semiconjugacy h : S1 → S1 and a point x0 ∈ S1

such that

• h ◦ f = Rθ ◦h,
• h−1( f n(x0)) is a nontrivial closed interval for all n ∈Z,
• h−1(x) is a single point for all X outside of the orbit of x0.

Lemma 6.9. If f is a Denjoy circle transformation, then f |NW ( f ) is topologically conju-
gated to a Sturmian subshift.

Sketch of proof. Recall that Sturmian sequences can be obtained by looking at codes ap-
pearing of the rotation Rθ using the intervals [0,1−θ) and [1−θ,1). In the case of a circle
rotation the map which sends the code to the point is not one-to-one. However, in the
case of a Denjoy transformation, the coding intervals can be taken to cover only the
nonwandering set, and are therefore disjoint. This yields a conjugacy instead of a semi-
conjugacy. □

Corollary 6.10. Denjoy circle transformations are not variational.
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Proof. By Poincaré recurrence, any invariant measure for a Denjoy transformation must
be supported on its nonwandering set. Since restricted to this set, the system is topo-
logically conjugated to a Sturmian shift, we conclude that it is uniquely ergodic and that
the unique invariant measure is Kronecker. Thus, the metric entropy has 0 entropy at
all scales. However, since there is a compact invariant set topologically conjugated to a
Sturmian subshift, the semi-topological and topological entropies are both linear. □

6.4. Geodesic flow on T2. Another unexpected feature of slow entropy is the failure of
additivity over ergodic decompositions. Letµ= ∫

E νd µ̂(ν) be the ergodic decomposition
of µ, where E is the space of ergodic invariant measures and µ̂ is a probability measure
on E . For the classical entropy at exponential scale [32, Theorem 9.6.2], we have that

(6.6) hµ( f ) =
∫
E

hν( f )d µ̂(ν).

In this section, we explain that such a formula cannot hold for slow entropy, even
when restricting so a fixed scale such as the polynomial scale.

It is well-known that the geodesic flow on T 1T2, the unit tangent bundle to T2, is not
ergodic and has a smooth ergodic decomposition. Each ergodic component is diffeo-
morphic to T2 and corresponds to the unit speed linear flow in an irrational direction
(the rational directions have measure 0, so we may omit them from the ergodic decom-
position). Hence, at any scale, the ergodic components of the Haar measure on T 1T2 all
have 0 entropy at all scales. The following Lemma shows that we can obtain a positive
slow entropy by “gluing” several copies of Kronecker systems together in an interesting
way.

Lemma 6.11. If ϕt : T 1T2 → T 1T2 is the geodesic flow on T2, then the topological and
Haar slow entropy of ϕt is 1 at polynomial scales nχ(t ) = tχ.

Proof. Observe that Isom(R2) ∼= S1 ⋉R2 acts simply transitively on T 1R2, and that T 1T2

is the quotient of T 1R2 by Z2. Furthermore, since the isometry group takes orbits of the
geodesic flow to orbits of the geodesic flow, it follows that the geodesic flow is smoothly
conjugated to homogeneous flow on Isom(R2)/Z2 by a one-parameter subgroup of R2 ⊂
T1R2. IfΘ ∈ Lie(Isom(R2)) represents the generator of the subgroup S1, and X and y rep-
resent orthonormal generators of R2, then (up to choice of orientation), we have struc-
ture relations

[Θ, X ] = Y , [Θ,Y ] =−X , [X ,Y ] = 0.

From this, one easily checks that in this basis ad(X ) is0 1 0
0 0 0
0 0 0

 ,

so by [17], it follows that the polynomial slow entropy of ϕt is 1. □

We remark that this geodesic flow is also conjugated to the suspension of the affine
map (x, y) 7→ (x, y +x), so we have the phenomenon for transformations as well.

7. The slow entropy of some interval exchanges

Interval exchange transformations or IETs are piecewise isometries, with a finite
number of discontinuities. Moreover, IETs preserve the orientation. These maps can
be regarded as generalizations of rotations. In this section, we will compute the met-
ric slow entropy of 3-IETs. The computations for the metric entropy will occupy most
of Section 7. We will prove that for a large class of 3-IETs the metric slow entropy is 1 for
the polynomial scale aχ(n) = nχ, see Theorem 7.1.
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Theorem 7.1. Let ∆ ⊂ R3 be the set {(x, y, z) : x + y + z = 1, x, y, z > 0}. There exists a
set A ⊂ ∆ of Hausdorff dimension 2 such that if g is a 3-IET determined by λ ∈ A, then
hLeb,aχ (g ) = 1.

We will easily see that the topological slow entropy of the corresponding symbolic
system is at most 1 with respect to the same scale, see Proposition 7.5. This combined
with Theorem 7.1 prove Theorem 1.3.

Remark 7.2. We have used the convention that the limits appearing in the definitions
of the functions δS

f ,·,χ slow entropy are limsup’s. In general these are not actual limits,

and we rely on this choice several times in the proof. It would be interesting to make
similar computations for the liminf definitions. It is already known that a gap may exist,
and special attention is paid to this subtlety in [3].

7.1. Preliminaries of IETs. We refer the reader to [33, 31] for more details about interval
exchange transformations (IET).

Let A be a collection of d symbols and λ ∈ RA
>0 be a vector of positive entries. Given

two bijective functions πt : A → {1, . . . ,d}, πb : A → {1, . . . ,d}, we obtain a permutation
of the symbols in A defined by

π=
(
π−1

t (1) . . . π−1
t (d)

π−1
b (1) . . . π−1

b (d)

)
.

Let I ⊂ R be a bounded interval, closed on the left and open on the right, and denote
the length of I by |I |. From now on, we will assume that the left endpoint of I is 0. The
vector λ and the permutation π determine a partition {Ia}a∈A where

Ia =
 ∑

{b:π−1
t (b)<π−1

t (a)}

λb ,
∑

{b:π−1
t (b)≤π−1

t (a)}

λb

 ,

and the interval I = [0, |I |), where |I | =∑
A∈A λa .

Definition 7.3. An interval exchange transformation on d intervals (d-IET) g := gλ,π :
I → I determined by a length vector λ and permutation π is the bijective map defined by

(7.1) g (x) = x + ∑
{b:π−1

b (b)<π−1
b (a)}

λb −
∑

{b:π−1
t (b)<π−1

t (a)}

λb , if x ∈ Ia .

Any IET is a measure preserving transformation with respect to the Lebesgue mea-
sure Leb on the interval I . If for some k < d , the set {1, . . . ,k} is π invariant, the IET is a
concatenation of IETs with fewer intervals. If {1, . . . ,k} is not invariant for every k < d , we
say that the permutation (and the IET) is irreducible.

7.2. Topological and semi-topological slow entropy of a class of d -IETs. Let g = gλ,π

be a d-IET, and denote D = {β1, . . . ,βd−1} the set of discontinuities of g . Here, βi =∑i
j=1λ j . For convenience, denote β0 = 0 and βd = |I |. The map g has the idoc property

(infinite distinct orbit condition) if for all n > 1, D ∩ g−n(D) =∅. Keane in [23] proved
that an idoc IET is minimal.

From now on, we will assume that π is an irreducible permutation. The set I \D has
the d continuity intervals of g . By including the left endpoint, let P := {Ia}a∈A be the
natural partition of g .

We have the following results regarding the number of Bowen balls.

Lemma 7.4. Let ϵ > 0 be sufficiently small. Suppose that g has the idoc property. There
exists n0 such that B n+1

g (x,ϵ) ⊂P n(x) and P n(x) ⊂ B n
g (x,ϵ) for all n ≥ n0 and x ∈ I .
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Proof. Assume that ϵ is small enough so that it has the following property: if d(x, y) < ϵ

but y ̸∈P (x), then d(g (x), g (y)) ≥ ϵ. Equivalently, if d(x, y) < ϵ and d(g (x), g (y)) < ϵ, then
y ∈ P (x). If no such ϵ existed, then at least one of the points βi would be a removable
discontinuity. Since g has the idoc property, then ||P n || := maxP∈P n |P | ↓ 0. Let n0 be
such that ||P n0 || < ϵ

d |I | .
Since P n = ∧n−1

i=0 g−i (P ), then for all n ≥ n0 and y ∈ P n(x), we have that

d(g i (x), g i (y)) < ϵ for 0 ≤ i ≤ n −1. This proves that P n(x) ⊂ B n
g (x,ϵ).

To see the other containment, suppose that d(g i (x), g i (y)) < ϵ for i = 0, . . . ,n. By the
property establishing the smallness of ϵ, it follows that g i (x) ∈ P (g i (y)) for i = 0, . . . ,
n −1. □

With the above, we can conclude the following about the topological entropy.

Proposition 7.5. Let gλ,π be d-IET. Suppose that it has the idoc property. Then |P n | = dn
and htop,aχ = 1 with the polynomial scale aχ(n) = nχ.

Proof. The idoc property implies that P n = ∧n−1
i=0 g−i (P ) has exactly dn atoms. Apply-

ing Lemma 7.4,

δg ,I ,χ(ϵ) = limsup
n→∞

d

nχ−1 .

Then
htop,aχ (g ) = lim

ϵ→0

(
sup

{
χ : δg ,I ,χ(ϵ) > 0

})= 1. □

Define ϵn := minP∈P n |P |, the length of the smallest atom in the partition P n . An
IET is linearly recurrent if there exists a constant C > 0 such that for every n ≥ 1, then
nϵn ≥C .

We have the following characterization of a big class of d-IETs.

Proposition 7.6. Suppose that g is an idoc d-IET. The following are equivalent:

(1) The Lebesgue measure is homogeneous, see Definition 4.4.
(2) g is linearly recurrent.

Proof. If we assume (1), fix ϵ> 0 and c > 0 as in the definition of homogeneous measure.
Then

1

c
≤

Leb(B n
g (x,ϵ))

Leb(B n
g (y,ϵ))

≤ c

for all n sufficiently large. In particular, it follows that for every P ∈P n ,

|P (y)|
c

=
Leb(B n

g (y,ϵ))

c
≤ ϵn ,

adding both sides of the inequality over P ∈ P n we obtain C := 1
dc ≤ nϵn for all n suffi-

ciently large. This proves (2).
Assume (2), and suppose by contradiction that (1) does not happen. So, for every

1 > k > 0 there exists n very large such that

Leb(B n
g (x,ϵ))

Leb(B n
g (y,ϵ))

< k.

Without loss of generality, we can assume that ϵn = Leb(B n
g (x,ϵ)) and Leb(B n

g (y,ϵ)) < 1
n .

Then we have that
nϵn = n Leb(B n

g (x,ϵ)) < k.

In particular, if k =C , which contradicts (2). □
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We have the main result of this section:

Corollary 7.7. Suppose that g is an idoc, linearly recurrent d-IET. Then, for aχ = nχ, we
have that

(7.2) hsemi,Leb,aχ (g ) = htop,aχ = 1

Proof. Theorem 4.5 and Proposition 7.6 imply that hsemi ,Leb,aχ (g ) = htop,aχ (g ). Propo-
sition 7.5 implies that the equality is 1. □

We note that this does not say anything about the metric slow entropy of IETs. The
class of linearly recurrent IET is uniquely ergodic by [30, Theorem 1.2] then, computing
the metric slow entropy of a linearly recurrent IET with respect to the Lebesgue measure
will say whether such IET is variational. We also want to remark that the conditions
in Corollary 7.7 are satisfied by a set of parameters λ of Hausdorff dimension d . This
was noted by D. Robertson following his proof of [27, Proposition 4] and the proof of [5,
Theorem 1.4].

7.3. On 3-IETs. Any vector of positive entries λ = (λA ,λB ,λC ) and the symmetric per-

mutationπ=
(

A B C
C B A

)
determines a 3-IET given by Equation (7.1), which in a simpler

form is

g (x) =


x +λB +λC if x ∈ [0,λA),
x +λC −λA if x ∈ [λA ,λA +λB ),
x −λA −λB if x ∈ [λA +λB , |I |).

It is common to think of 3-IETs over I = [0,1), but we will consider 3-IETs with I =
[0,1+ξ), A = {A,B ,C }, and the symmetric permutation π=

(
A B C
C B A

)
.

Let α ∈ (0,1) be an irrational number, and let
{

pm
qm

}
m≥1

be the sequence of best ap-

proximations. Let ||x|| be equal to

||x|| := min
n∈Z

|x −n|.
The numberα is badly approximable if there exists Cα > 0 depending onα, satisfying

qm+1 ≤Cαqm ,

for every m ∈N. Equivalently, α is badly approximable, if there exists Dα > 0, such that

||mα|| ≥ Dα

m
for every m ∈N.

For every real number α, we denote Sα the set

Sα =
{
ξ ∈R : ||ξ− jα|| ≥ Cξ

qn
for every −qn < j < qn

}
.

We have the following property regarding the Hausdorff dimension of the numbers.

Lemma 7.8. The set of badly approximable real numbers has Hausdorff dimension one.
For arbitrary α, the set Sα has Hausdorff dimension one.

Proof. For badly approximable numbers, this was proved in [28, Theorem 3]. Lastly, [29,
Theorem 1] proved that dimSα = 1 for every real number α. □

Lemma 7.9. Define

X = {
(α,ξ) ∈ (0,1)× (0,1) :α is badly approximable and ξ ∈ Sα

}
.

Then Hausdorff dimension of X , dim X = 2.
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Proof. We apply the following theorem about the Hausdorff dimension of products [10,
Theorem 5.8 and Exercise 5.2]: Let A,B be Borel subsets of a Euclidean spaces and let
Y ⊂ A×B be such that for all a ∈ A, dim{b ∈ B : (a,b) ∈ Y } ≥ d . Then

dimY ≥ dim A+d .

Let A be the set of badly approximable numbers, B = (0,1), and replace X into y . The set
{b : (a,b) ∈ X } is the set Sa . From Lemma 7.8, dimSa = 1. Therefore dim X ≥ dim A +1.
Thus dim X = 2, because dim A = 1 as stated in Lemma 7.8. □

The proof of Theorem 7.1 follows from Proposition 7.10 and Lemma 7.11. Proposi-
tion 7.10 is the core of the argument and its proof will be postponed until Section 7.5.

Proposition 7.10. Let ξ ∈ (0,1) and let λ= (ξ,λB ,λC ) ∈R3+ such that λB +λC = 1. Define

α=
{
λC −ξ if λC > ξ,
1+λC −ξ if λC < ξ.

If α is badly approximable, and ξ ∈ Sα, then the 3-IET f := fλ,π determined in this way
satisfies hLeb,aχ ( f ) = 1 with polynomial scale aχ(n) = nχ.

Lemma 7.11. Let λ ∈ R3
>0, c > 0 and π be a symmetric permutation. The 3-IETs g := gλ,π

and h := hcλ,π are smoothly conjugated by the map x 7→ cx. Moreover, any 3-IET g :=
g(λA ,λB ,λC ),π is measurably conjugated to its inverse g−1 = g−1

(λC ,λB ,λA ),π, by the hyperelliptic
involution map ι(x) = |I |−x.

Proof. For c > 0, let f : [0,
∑
αλα) → [

0,c
∑
αλα

)
be the map x 7→ cx. Let g be the 3-IET

determined by the length vector λ and the permutation π. Let h be the 3-IET deter-
mined by the length vector cλ and the permutation π. The map f is a diffeomorphism
that sends the Lebesgue measure on

[
0,

∑
αλα

)
to the Lebesgue measure on

[
0,c

∑
αλα

)
.

The IET g maps by translation the segment
[∑

πt (α)<i λα,
∑
πt (α)≤i λα

)
to the segment[∑

πb (α)<4−i λα,
∑
πb (α)≤4−i λα

)
. Thus the composition f ◦ g maps the segment[∑

πt (α)<i λα,
∑
πt (α)≤i λα

)
by stretching and translating to the segment

[
c
∑
πb (α)<4−i λα,

c
∑
πb (α)≤4−i λα

)
.

Similarly, h maps by translation the interval
[
c
∑
πt (α)<i λα,c

∑
πt (α)≤i λα

)
to the in-

terval
[
c
∑
πb (α)<4−i λα,c

∑
πb (α)≤4−i λα

)
. In conclusion, for all x ∈ [

0,
∑
αλα

)
, we have f ◦

g (x) = h ◦ f (x). Proving that g and h are smoothly conjugated.
Denote I = [0,λA +λB +λC ), and fix the permutation

π=
(

A B C
C B A

)
.

Let g be the 3-IET determined by the length vector λ = (λA ,λB ,λC ) and the permuta-
tion π. Let g−1 be the inverse map of g . We let the reader verify that this is a 3-IET deter-
mined by the length vector λ′ = (λ′

A ,λ′
B ,λ′

C ) ≡ (λC ,λB ,λA) and the permutation π. Let ι :
I → I be the map x 7→ |I |−x. The map ι sends the open interval

(∑
π∗(α)<i λα,

∑
π∗(α)≤i λα

)
to the open interval

(∑
π∗(α)<4−i λ

′
α,

∑
π∗(α)≤4−i λ

′
α

)
by translation and order reversing,

where ∗ ∈ {t ,b}. The composition ι◦ g maps the interval (
∑
πt (α)<i λα,

∑
πt (α)≤i λα) to the

interval (
∑
πb (α)<i λ

′
α,

∑
πb (α)≤i λ

′
α) by a translation and order reversing. Also, the compo-

sition g−1◦ιmaps the open interval (
∑
πt (α)<i λα,

∑
πt (α)≤i λα) to the interval (

∑
πb (α)<i λ

′
α,∑

πb (α)≤i λ
′
α) by a translation and order reversing. Thus, we have the equality ι◦g = g−1◦ι

on the interior of the intervals Ii for i ∈ {1,2,3}. The equality does not occur at the left
endpoints of the intervals Iα, for example ι(g (0)) = |I | − g (0) = |I | −λA −λB = λC , but
g−1(ι(0)) is not defined because ι(0) = |I | and g−1 is not defined at |I |. Thus the maps g
and g−1 are measurable conjugated, since the map ι is a diffeomorphism that preserves
the Lebesgue measure, and ι(g (x)) = g (ι(x)) except at finitely many x ∈ I . □
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Figure 1. This is case λC > ξ in Equation (7.4). In Figure 1a, the sides
of a rectangle [0,1+ξ)×[0,1] are identified according to Equation (7.3).
The vertical flow’s first return time to [0,1+ξ) is a 3-IET. In Figure 1b,
suspension of a rotation on [0,1] with f = 21[0,ξ) +1[ξ,1). This can also
be obtained by cutting over the dotted line in Figure 1a and gluing the
small piece over the segment [1,1+ξ)× {1}.

7.4. Suspensions of a 3-IET and a rotation. Let (T, X ,µ) be measure preserving trans-
formation and f : X →R>0 an L1(µ) function. Let X f be the quotient

X f = {
(x, s) : x ∈ X and 0 ≤ s ≤ f (x)

}
/ ∼,

with (x, f (x)) ∼ (T (x),0). The suspension flow determined by T and f is the flow T f
t :=

Ft : X f → X f defined by Ft (x, s) = (T n(x), s + t −∑n−1
i=0 f (T i x)), where n ≥ 0 is such that

f (n)(x) ≤ s + t < f (n+1)(x), where f (n)(x) is the Birkhoff sum

f (n)(x) :=
n−1∑
i=0

f (T i x).

7.4.1. A specific suspension for a 3-IET. Consider a 3-IET with |I | = 1+ξ, and the con-
ditions λA = ξ< λB +λC = 1. The suspension with the constant function 1 of this 3-IET
is presented in Figure 1a. This construction starts with a rectangle of length 1+ ξ and
height 1, by convenience assume that the left bottom corner is placed at the origin. The
sides of the rectangle are identified by translation as follows:

[0,λC )× {0} ∼ [λA +λB ,1+ξ)× {1}

[λC ,λB +λC )× {0} ∼ [λA ,λA +λB )× {1}

[1,1+ξ)× {0} ∼ [0,λA)× {1}

{0}× [0,1) ∼ {1+ξ}× [0,1).

(7.3)

7.4.2. Suspension flow of an irrational rotation and proof of Theorem 7.1. Towards
the computation of the slow entropy of the 3-IET mentioned in Section 7.4.1, we will
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Figure 2. This is case λC < ξ in Equation (7.4). In Figure 2a, the sides
of a rectangle [0,1+ξ)×[0,1] are identified according to Equation (7.3).
The vertical flow’s first return time to [0,1+ξ) is a 3-IET. In Figure 2b,
suspension of a rotation on [0,1] with f = 21[0,ξ) +1[ξ,1). This can also
be obtained by cutting over the dotted line in Figure 2a and gluing the
small piece over the segment [1,1+ξ)× {1}.

compute the slow entropy of the vertical flow in the construction involving the suspen-
sion of the 3-IET in Figure 1b. An equivalent construction is the suspension of a rotation
T : [0,1) → [0,1), x 7→ x +α mod 1. The suspension function is f = 21[0,ξ) +1[ξ,1). Com-
putations for the first return time of the vertical flow to the segment [0,1)×{0} show that

(7.4) α=
{
λC −ξ if λC > ξ,

1+λC −ξ if λC < ξ.

Although we are suspending a rotation, the 3-IET is still present in the first return
map of the vertical flow to the segment I = [0,1)× {0}∪ [0,ξ)∪ {1} ⊂ [0,1) f . Figure 1a
and Figure 1b are proof by picture of the case λC >λA = ξ. Because the rotation angle α
in Figure 1b is equal to the length of the segment labeled C1, thenα is equal to λC −λA =
λC −ξ. Figure 2a and Figure 2b are proof by picture of the case λC <λA = ξ. The rotation
angle α of the suspension in Figure 2b is equal to the sum of the lengths of the segments
labeled C and B1. The length of the latter is equal to 1−λA = 1−ξ, then α= 1+λC −ξ.

Starting with α,ξ ∈ [0,1], the corresponding 3-IET is given by the length vector:

(7.5) F0(α,ξ) := (λA ,λB ,λC ) =
{

(ξ,1−α−ξ,α+ξ) if α+ξ< 1,

(ξ,2−α−ξ,α+ξ−1) if α+ξ> 1.

The proof of Equation (7.5) follows from similar computations and pictures as a verifi-
cation of Equation (7.4).

Proof of Theorem 7.1. Let ∆ be the set {(x, y, z) : x + y + z = 1, x, y, z > 0}. The subset X
in Lemma 7.9 is of Hausdorff dimension 2. Let F : [0,1]× [0,1] → ∆ be the function de-
fined by F (α,ξ) = 1

1+ξF0(α,ξ). Since the function F0 is linear and of rank 2 in connected
components, the Hausdorff dimension of the set F0(X ) is 2. Additionally, the factor of
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1/(1+ξ) preserves the Hausdorff dimension since it is the normalization factor, the l1-
norm of any point in the image of F0 is 1/(1+ξ). This proves that the set A := F (X ) is of
Hausdorff dimension 2.

Note that by Proposition 7.10, the metric slow entropy of the 3-IET determined by
the vector F0(α,ξ) is 1, by Lemma 7.11, the 3-IET determined by F0(α,ξ) and the 3-IET
determined by F (α,ξ) = 1

1+ξF0(α,ξ) are measurably conjugated. Then, every 3-IET de-
termined by a vector in F (X ) must have metric slow entropy 1 with aχ = nχ. □

7.5. Computation of slow entropy and proof of Proposition 7.10. We aim to compute

the growth rate of the number of Hamming balls of time R of the suspension flow T f
t ,

because as we mentioned in the previous section, this suspension is equivalent to the
suspension of a 3-IET with constant roof function 1. Therefore, these Hamming balls’
growth rate is the same as the Hamming balls’ of the suspended 3-IET.

Let α and ξ as before and f = d11[0,ξ) +d21[ξ,1). The conditions on α and ξ will be
given later. Given a subset A ⊂ T, we use A f to denote the set {(y, t ) ∈ T f : y ∈ A}.
We also let λ f denote the normalized Lebesgue measure restricted to T f . Let M =
max{d1,d2, 1

d1
, 1

d2
} and e = |d1 −d2|. The special situation in which we prove Proposi-

tion 7.10 is by setting d1 = 2 and d2 = 1. Given R > 0 very large and ϵ> 0, fix a generating
partition P such that all atoms in the partition are squares with length between 1/2k to
1/k for some large value k to be specified later. We want to show that ST f ,P (ϵ,R) ≥ C R
holds for some constant C , hence

limsup
R→∞

ST f ,P (ϵ,R)

Rχ
=∞

for any χ< 1. This gives us a lower bound for the metric slow entropy, i.e., hµ,aχ (T f ) ≥ 1.
From now on, we will assume thatα is badly approximable; otherwise, we will specify.
To prove Proposition 7.10, we combine several lemmas which describe recurrence

properties for the base circle rotation Rα. In fact, this will allow us to compute the slow
entropy of some other special flows with piecewise constant roof functions (see Propo-
sition 7.16). We therefore state a few lemmas (Proposition 7.12 - Lemma 7.15), which we
use to prove Proposition 7.10, delaying their proof until later in this section.

The following proposition uses similar ideas in [13, Lemma 4], and is a Ratner-type
property for the special flows we consider.

Proposition 7.12. Suppose α ∈ (0,1) is badly approximable, and ξ ∈ Sα. There exists
κ,c > 0 and a finite set V ⊂R\ {0} such that for all large enough m, and x, y ∈Twith

Cξ

2qm+1
≤ ||x − y || < Cξ

2qm
,

for some time n where

qm ≤ N ≤ cqm+1 +2qm ,

the following set

Λ= {
n ∈ [0, N ]∩Z : f (n)(x)− f (n)(y) ∈V

}
has cardinality larger than κN .

Proposition 7.12 shows that in some definite proportion, the Birkhoff sum f (n) of
nearby points will differ. Moreover, the next lemma shows that the splitting phenom-
enon occurring in the Birkhoff sums implies the splitting time of two orbits in special
flow space by a definite proportion.
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Lemma 7.13. Let x̃ = (x, s), ỹ = (y, s′) be two elements in the same atom of partition. If

Cξ

2qm+1
≤ ||x − y || < Cξ

2qm

for some m, there exists some time T and constant D where T ≤ Dqm and κ′ > 0 such that
the following set

Λ̃= {
t < T : T f

t x̃ and T f
t ỹ are not in the same atom

}
has measure |Λ̃| larger than κ′T .

Let x̃ = (x, s) be an element in T f . Consider a Hamming ball B R
T f ,P

(x̃,ϵ) =: B R (x̃,ϵ)

centered at x̃, then for any ỹ = (y, s′) ∈ B R (x̃,ϵ) we want to show there exists n1 and n2

such that ||x +n1α− (y +n2α)|| < H/R for some constant H .

Lemma 7.14. There exists a constant H , such that for any ỹ = (y, s′) ∈ B R (x̃,ϵ), there are
t0, s0, s′0 ∈ (0,R), n1 = n1(t0, x, s) ∈Z and n2 = n2(t0, y, s′) ∈Z satisfying

||x +n1α− (y +n2α)|| < H

R
,

where T f
t0

x̃ = (x +n1α, s0) and T f
t0

ỹ = (y +n2α, s′0) are in the same atom of P .

From Lemma 7.14, for every ỹ = (y, s′) ∈ B R (x̃,ϵ), we obtain ||x−y−(n2−n1)α|| ≤ H/R.
Therefore, ỹ is in

|n2−n1|⋃
j=−|n2−n1|

[
x + jα− H

R
, x + jα+ H

R

] f

.

To get a lower bound of ST f ,P (ϵ,R), we will compute a uniform upper bound for the

Lebesgue measure of B R (x̃,ϵ), it suffices to find an upper bound for |n2−n1| for all x̃ and
ỹ ∈ B R (x̃,ϵ). Lemma 7.15 below, summarizes this idea.

Lemma 7.15. There exists a constant G > 0 depending only on α and ξ such that
|n2 −n1| ≤G, where n1 and n2 are the integers in Lemma 7.14.

Let D ⊂ [0,1] be the set consisting of irrational numbersα such that there exists C1 > 0
depending on α, satisfying

qm+1 ≤C1qm log2 qm

for every m. In particular D contains badly approximable irrational numbers.

Proposition 7.16. Ifα ∈D, ξ ∈T and we consider the roof function f = d11[0,ξ)+d21[ξ,1),
the metric slow entropy of the special flow system is at most 1 for scale aχ(t ) = tχ.

Proof of Proposition 7.10. From Lemma 7.14, for R large enough and ỹ ∈ B R (x,ϵ), there
are n1,n2 natural numbers, such that

ỹ ∈
|n2−n1|⋃

j=−|n2−n1|

[
x + jα− H

R
, x + jα+ H

R

] f

.

From Lemma 7.15, there is an upper bound G for |n2 − n1| independent of ỹ . Thus
Leb(B R (x,ϵ)) ≤ 4G H

R . In other words, for any large R > 0, the measure of each Hamming
ball is bounded above by C ′/R for some constant C ′. Thus, there exists a constant C > 0
independent of R and ϵ such that ST f ,P (ϵ,R) ≥ C R. This shows the slow entropy χ for
this special flow is at least 1 using time scale aχ(t ) = tχ.

Since α ∈D (α is badly approximable), applying Proposition 7.16 the upper bound of
the metric slow entropy is 1. □

The remaining of this paper is dedicated to prove Proposition 7.12, Lemma 7.13,
Lemma 7.14, Lemma 7.15, and Proposition 7.16.
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Proof of Proposition 7.12. By the definition of f (n), and assuming that 0 < x < y < 1, it
follows that

f (n)(x)− f (n)(y) = e
n−1∑
j=0

1(x,y](ξ− jα)−e
n−1∑
j=0

1(x,y](− jα).

By assumption on ξ, the interval of (x, y] can be crossed by the orbit of ξ (and the orbit
of 0) for at most cqm+1+2qm

qm
+1 ≤ [cCα]+4 =: U times. Hence, choose

V = {ne : −U ≤ n ≤U and n ̸= 0}.

Taking κ = 1
2cCα+4 , assume for all 0 ≤ n ≤ qm , f (n)(x)− f (n)(y) ∈ V , then we are done.

Suppose n0 is the minimum number such that

f (n0)(x)− f (n0)(y) = 0.

There exists I0, where I0 is the minimum time such that
I0⋃

j=0
R j
α(x, y] covers 0 or ξ. Be-

causeα is badly approximable, let c be the constant such that I0 ≤ cqm+1. Here c is a con-
stant depending only onα and ξ. Assume without loss of generality, ξ ∈ (x+ I0α, y+ I0α].
Assume at time J0, 0 ∈ (x + (I0 + J0)α, y + (I0 + J0)α]. This means

||ξ− (x + I0α)|| ≤ Cξ

2qm

and

||x + (I0 + J0)α|| ≤ Cξ

2qm
.

By triangle inequality, we obtain ||ξ+ J0α|| ≤ Cξ

qm
. By definition of ξ, this means J0 ≥ qm .

Therefore, when n ∈ [I0 +1, I0 + J0],

f (n)(x)− f (n)(y) ∈V.

Hence, choose N to be the time n0 + I0 +qm , we complete the proof. □

Proof of Lemma 7.13. From Proposition 7.12, we can find such constants κ, and n, and

the interval Λ= [a,b]∩N. For any time t0 ∈ [ f (a)(x)− s, f (b)(x)− s], T f
t0

x̃ = (x +n1α, s0),

T f
t0

ỹ = (y +n2α, s′0). Then

t0 = f (n2)(y)+ s′0 − s′ = f (n1)(x)+ s0 − s.

If T f
t0

(x̃) and T f
t0

(ỹ) are in the same atom, we can obtain |s0 − s′0| < 1/k. Since x̃ and ỹ are
also in a same atom, we have

| f (n2)(y)− f (n1)(x)| ≤ 2/k.

But from Proposition 7.12, there exists p ∈V such that

f (n1)(x) = f (n1)(y)+p.

Thus, by combining the above two equations, we deduce:

| f (n2)(y)− f (n1)(y)−p| ≤ 2/k.

Since V is a fixed finite set, we can assume 2/k ≪ min{|q | : q ∈V }, so n2 ̸= n1. Because

T f
t0

(x̃) and T f
t0

(ỹ) are in the same atom and f ≥ 1
M , we have the following relations:

(7.6)
Dα

|n2 −n1|
≤ ||(n2 −n1)α|| < 2

k
,

and

(7.7) |n2 −n1| ≤ (max{|q| : q ∈V }+1)M .
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The above two equations are contradictory since we can choose k to be arbitrarily

large. Therefore, for any such time t0 ∈ [ f (a)(x)− s, f (b)(x)− s], T f
t0

(x̃) and T f
t0

(ỹ) are not

in the same atom. Choosing T = f (b)(x)− s, and κ′ = κ/100M . We know that

T ≤ (N +1)M ≤ (cCα+3)qm M .

Hence, choose D = (cCα+3)M , we complete the proof. □

Proof of Lemma 7.14. By our choice of generating partitions, the set of times for which

T f
t x̃ and T f

t ỹ belong to the (closure of) the same partition element is a union of closed

intervals. We may therefore write (0,R) as a disjoint union of intervals
J⋃

j=1
I j , where for

each I j , T f
t (x̃) and T f

t (ỹ) are either in the same atom of P , or they are in different atoms
of P and the intervals Ii are maximal among such choices. In particular, either for all
odd values or all even values of I , the interior of Ii consists of matching times for x̃ and ỹ .

Case 1. If |J | = 1 or 2, T f
t (x̃) and T f

t (ỹ) stays in the same atom all time in an interval
of length at least (1−ϵ)R. Let X and y be the corresponding first coordinates when they
stay in the same atom for the first time. We know that

(7.8) f (n)(x)− f (n)(y) = e
n−1∑
j=0

1(x,y](ξ− jα)−e
n−1∑
j=0

1(x,y](− jα).

Since f is bounded between d1 and d2, R/2M < N < 2MR where n is an upper bound
of the number of terms in Equation (7.8). Let d = ||x − y ||, as in the proof of Propo-
sition 7.12, there exists a constant N (d) where N (d) ≤ K

d for some constant k, such

that T ⊂
N (d)⋃
j=1

(x + jα, y + jα]. By assumption, (x, y] cannot cross discontinuity points

before N /2 times of rotation when the orbit of x̃ and ỹ stay in the same atom. Hence,
N (d) ≥ R/4M . Therefore, there exists a constant H1 s.t. d ≤ H1/R.

Case 2. If |J | > 2, we regroup those intervals in the following way.
Let t0 be the first time when Tt0 (x̃) and Tt0 (ỹ) stay in the same atom. Denote

Ĩ0 = {t : t < t0}; note Ĩ0 could be an empty set. Then let T f
t0

(x̃) = (x0, s0), T f
t0

(ỹ) = (y0, s′0).
Since they are in the same atom, there exists an integer m such that

Cξ

2qm+1
≤ ||x0 − y0|| <

Cξ

2qm
≤ 1/k.

Applying Lemma 7.13, we can find the corresponding time T . By definition, t0 ∈ I j0 for
some j0. Let j1 > j0 be the minimal natural number (if exists) such that the following

interval
j1−1⋃
l= j0

Il , has a length larger than T , and I j1 is the interval when Tt (x̃) and Tt (ỹ)

are in the same atom. If such j1 exists, denote

Ĩ1 :=
j1−1⋃
l= j0

Il .

Otherwise, denote Ĩ1 = [t0,R). When
1⋃

j=0
Ĩ j ̸= (0,R), we know at the starting time t1 of

I j1 , Tt1 (x̃) and Tt1 (ỹ) are in the same atom, we can then repeat the above procedure to
find Ĩ2. Inductively, we can get

(0,R) =
L⋃

j=0
Ĩ j

where L+1 is the number of such intervals. By assumption, L ≥ 1.
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If L = 1, for the first time when the orbit of x̃ and ỹ are in the same atom, let m be

the number s.t. the distance of the first coordinate is between
Cξ

2qm+1
and

Cξ

2qm
, then we

can obtain R < T . Otherwise, from Lemma 7.13, there will be a constant κ′ which is
independent of R and ϵ, s.t. the total time when those two orbits are not in the same
atom is larger than κ′R. Since we can take ϵ< κ′ because κ′ is a fixed constant, this is a
contradiction. Hence,

1

Dqm
≤ 1

T
≤ 1

R
.

Therefore, the distance of first coordinate if less than H2
R for some constant H2.

If L > 1, the sum of the length of Ĩ j where j = 1, . . . ,L−1 is less than ϵR/κ′. Therefore,
the last interval is of length larger than (1−ϵ/κ′)R. Using a similar argument, there exists
a constant H3 satisfying the distance of the first coordinate is less than H3/R. Finally,
taking H = max{H1, H2, H3}, we finish the proof. □

Proof of Lemma 7.15. From the definition of n1 and n2, we know

| f (n1)(x)− f (n2)(y)| ≤ | f (n1)(x)− f (n2)(y)+ s0 − s′0|+ |s0 − s′0| ≤G1

for some constant G1. Since n1 ≤ 2MR, we know there exists constant G2 such that

| f (−n1)(x +n1α)− f (−n2)(y +n2α)| ≤G2,

this is because the interval [x+n1α, y+n2α) only cross discontinuity points finitely many
times. Using triangle inequality, cocycle identity, and f ≥ 1

M , we get

(7.9)

G1 ≥ | f (n1)(x)− f (n2)(y)|
= | f (−n1)(x +n1α)− f (−n2)(y +n2α)+ f (n2−n1)(y +n2α)|
≥ | f (n2−n1)(y +n2α)|−G2

≥ |n2 −n1|
M

−G2.

Thus we can obtain |n2 −n1| ≤ (G2 +G1)M =: G . □

Proof of Proposition 7.16. Choose δ= η
2 . Let Zn be the subset

qn⋃
j=−qn

{
x ∈T : x + jα ∈ (−2q−1−δ

n ,2q−1−δ
n

)∪ (−2q−1−δ
n +ξ,ξ+2q−1−δ

n

)}
.

Since
∞∑

n=1

1

qδn
<∞, when N is large enough, λ

( ∞⋃
n=N

Zn

)
< ϵ/4.

Denote X̃ =
( ∞⋃

n=N
Zn

)c

, then λ f
(
X̃ f

)> 1−ϵ/2. Define

Ωκ =
{

ỹ ∈T f : d(ỹ ,∂P ) < κ}
.

There exists 0 < ϵ̃ < ϵ
100Mk , such that λ f (Ωẽ ) < ϵ/4. There exists some integer l such

that ql ≤ R < ql+1, choose R to be a large value such that l ≥ 2N and q−1
l < ẽ/100M .

Take A = X̃ ∩Ωẽ . Note that for x̃ = (x, s) ∈ A the Hamming ball B R (x̃,ϵ) centered at x̃
containing {

(y, t ) ∈T f : y ∈
(
− 1

q1+δ
l+1

+x, x + 1

q1+δ
l+1

)
, t ∈ (s − ẽ, s + ẽ)

}
.

Hence, ST f ,P (ϵ,R) ≤ C R1+δ log2+2δR for some constant C independent of R. It follows

that δS
T f ,P ,χ

(ϵ) = 0 when χ= 1+η. □
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