Posets and fractional Calabi–Yau categories
Mathematics Research Reports, Volume 6 (2025), pp. 1-16.

This article deals with a relationship between derived categories of modules over some partially ordered sets and triangulated categories arising from quasi-homogeneous isolated singularities. It produces heuristics for the existence of derived equivalences between posets, using the geometric category as an auxiliary intermediate. The notion of Weight plays a central role as a simple footprint of the derived categories under consideration.

Received:
Revised:
Published online:
DOI: 10.5802/mrr.21
Classification: 06A11, 18G80, 14B05
Mots-clés : poset, quasi-homogeneous singularity, derived category, derived equivalence, isolated singularity, fractional Calabi–Yau category
Frédéric Chapoton 1

1 Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS, 7 rue René-Descartes, 67000 Strasbourg, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{MRR_2025__6__1_0,
     author = {Fr\'ed\'eric Chapoton},
     title = {Posets and fractional {Calabi{\textendash}Yau} categories},
     journal = {Mathematics Research Reports},
     pages = {1--16},
     publisher = {MathOA foundation},
     volume = {6},
     year = {2025},
     doi = {10.5802/mrr.21},
     language = {en},
     url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.21/}
}
TY  - JOUR
AU  - Frédéric Chapoton
TI  - Posets and fractional Calabi–Yau categories
JO  - Mathematics Research Reports
PY  - 2025
SP  - 1
EP  - 16
VL  - 6
PB  - MathOA foundation
UR  - https://mrr.centre-mersenne.org/articles/10.5802/mrr.21/
DO  - 10.5802/mrr.21
LA  - en
ID  - MRR_2025__6__1_0
ER  - 
%0 Journal Article
%A Frédéric Chapoton
%T Posets and fractional Calabi–Yau categories
%J Mathematics Research Reports
%D 2025
%P 1-16
%V 6
%I MathOA foundation
%U https://mrr.centre-mersenne.org/articles/10.5802/mrr.21/
%R 10.5802/mrr.21
%G en
%F MRR_2025__6__1_0
Frédéric Chapoton. Posets and fractional Calabi–Yau categories. Mathematics Research Reports, Volume 6 (2025), pp. 1-16. doi : 10.5802/mrr.21. https://mrr.centre-mersenne.org/articles/10.5802/mrr.21/

[1] G. E. Andrews Plane partitions. V. The TSSCPP conjecture, J. Combin. Theory Ser. A, Volume 66 (1994) no. 1, pp. 28-39 | DOI | MR | Zbl

[2] V. I. Arnold; S. M. Guseĭn-Zade; A. N. Varchenko Singularities of differentiable maps. Vol. I, Monographs in Mathematics, 82, Birkhäuser, 1985, xi+382 pages | DOI | MR

[3] D. Auroux; L. Katzarkov; D. Orlov Mirror symmetry for weighted projective planes and their noncommutative deformations, Ann. of Math. (2), Volume 167 (2008) no. 3, pp. 867-943 | DOI | MR | Zbl

[4] F. Bergeron; L.-F. Préville-Ratelle Higher trivariate diagonal harmonics via generalized Tamari posets, J. Comb., Volume 3 (2012) no. 3, pp. 317-341 | DOI | MR | Zbl

[5] P. Berglund; T. Hübsch A generalized construction of mirror manifolds, Nuclear Phys. B, Volume 393 (1993) no. 1-2, pp. 377-391 | DOI | MR | Zbl

[6] A. I. Bondal; M. M. Kapranov Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 6, p. 1183-1205, 1337 | DOI | MR

[7] D. Bressoud; J. Propp How the alternating sign matrix conjecture was solved, Notices Amer. Math. Soc., Volume 46 (1999) no. 6, pp. 637-646 | MR | Zbl

[8] D. M. Bressoud Proofs and confirmations, MAA Spectrum, MAA ; Cambridge University Press, 1999, xvi+274 pages http://links.jstor.org/sici?sici=0002-9890(200101)108:1<85:pactso>2.0.co;2-6 (The story of the alternating sign matrix conjecture) | DOI

[9] W. G. Brown; W. T. Tutte On the enumeration of rooted non-separable planar maps, Canadian J. Math., Volume 16 (1964), pp. 572-577 | DOI | MR | Zbl

[10] F. Chapoton Sur le nombre d’intervalles dans les treillis de Tamari, Sém. Lothar. Combin., Volume 55 (2005/07), B55f, 18 pages | MR | Zbl

[11] F. Chapoton Sur une opérade ternaire liée aux treillis de Tamari, Ann. Fac. Sci. Toulouse Math. (6), Volume 20 (2011) no. 4, pp. 843-869 | DOI | Numdam | MR | Zbl

[12] F. Chapoton On the categories of modules over the Tamari posets, Associahedra, Tamari lattices and related structures (Progr. Math.), Volume 299, Birkhäuser/Springer, Basel, 2012, pp. 269-280 | DOI | MR | Zbl

[13] F. Chapoton; S. Ladkani Derived equivalences between alt-Tamari lattices, 2025 (in preparation)

[14] C. Chenevière Linear Intervals in the Tamari and the Dyck Lattices and in the alt-Tamari Posets, 2022 | arXiv | DOI

[15] C. Combe Cubic realizations of Tamari interval lattices, Sém. Lothar. Combin., Volume 82B (2020), 23, 12 pages | MR | Zbl

[16] A. Del Lungo; F. Del Ristoro; J.-G. Penaud Left ternary trees and non-separable rooted planar maps, Theoret. Comput. Sci., Volume 233 (2000) no. 1-2, pp. 201-215 | DOI | MR | Zbl

[17] A. Dimca Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992, xvi+263 pages | DOI | MR

[18] E. Duchi; V. Guerrini; S. Rinaldi; G. Schaeffer Fighting fish, J. Phys. A, Volume 50 (2017) no. 2, 024002, 16 pages | DOI | Zbl

[19] E. Duchi; C. Henriet A bijection between Tamari intervals and extended fighting fish, European J. Combin., Volume 110 (2023), 103698, 21 pages | DOI | MR | Zbl

[20] W. Ebeling Homological mirror symmetry for singularities, Representation theory—current trends and perspectives (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2017, pp. 75-107 | DOI | MR | Zbl

[21] W. Ebeling; D. Ploog A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities, Manuscripta Math., Volume 140 (2013) no. 1-2, pp. 195-212 | DOI | MR | Zbl

[22] D. Favero; D. Kaplan; T. L. Kelly Exceptional collections for mirrors of invertible polynomials, Math. Z., Volume 304 (2023) no. 2, 32, 16 pages | DOI | MR | Zbl

[23] S. Fomin; A. Zelevinsky Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl

[24] M. Futaki; K. Ueda Homological mirror symmetry for Brieskorn-Pham singularities, Selecta Math. (N.S.), Volume 17 (2011) no. 2, pp. 435-452 | DOI | MR | Zbl

[25] M. Futaki; K. Ueda Homological mirror symmetry for singularities of type D, Math. Z., Volume 273 (2013) no. 3-4, pp. 633-652 | DOI | MR | Zbl

[26] M. Habermann A note on homological Berglund-Hübsch-Henningson mirror symmetry for curve singularities, 2022 | arXiv

[27] M. Habermann; J. Smith Homological Berglund-Hübsch mirror symmetry for curve singularities, J. Symplectic Geom., Volume 18 (2020) no. 6, pp. 1515-1574 | DOI | MR | Zbl

[28] C. Hertling; R. Kurbel On the classification of quasihomogeneous singularities, J. Singul., Volume 4 (2012), pp. 131-153 | DOI | MR

[29] C. Hertling; M. Mase The combinatorics of weight systems and characteristic polynomials of isolated quasihomogeneous singularities, J. Algebraic Combin., Volume 56 (2022) no. 3, pp. 929-954 | DOI | MR | Zbl

[30] H. Kajiura; K. Saito; A. Takahashi Triangulated categories of matrix factorizations for regular systems of weights with ϵ=-1, Adv. Math., Volume 220 (2009) no. 5, pp. 1602-1654 | DOI | MR | Zbl

[31] B. Keller Calabi-Yau triangulated categories, Trends in representation theory of algebras and related topics (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2008, pp. 467-489 | DOI | MR | Zbl

[32] B. Keller; L. Demonet A survey on maximal green sequences, Representation theory and beyond (Contemp. Math.), Volume 758, Amer. Math. Soc., [Providence], RI, 2020, pp. 267-286 | DOI | MR | Zbl

[33] M. Kontsevich Cours donné à l’École Normale supérieure (1998) (https://www.lamfa.u-picardie.fr/marin/docs/coursKont.pdf)

[34] M. Kreuzer; H. Skarke On the classification of quasihomogeneous functions, Comm. Math. Phys., Volume 150 (1992) no. 1, pp. 137-147 | DOI | MR | Zbl

[35] G. Kuperberg Another proof of the alternating-sign matrix conjecture, Internat. Math. Res. Notices (1996) no. 3, pp. 139-150 | DOI | MR | Zbl

[36] A. Kuznetsov Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math., Volume 753 (2019), pp. 239-267 | DOI | MR | Zbl

[37] S. Ladkani Universal derived equivalences of posets of cluster tilting objects, 2007 | arXiv | DOI

[38] S. Ladkani Universal derived equivalences of posets of tilting modules, 2007 | arXiv | DOI

[39] A. Lascoux; M.-P. Schützenberger Treillis et bases des groupes de Coxeter, Electron. J. Combin., Volume 3 (1996) no. 2, 27, 35 pages http://www.combinatorics.org/volume_3/abstracts/v3i2r27.html | DOI | MR | Zbl

[40] P. A. MacMahon Combinatory analysis, Chelsea Publishing Co., New York, 1960, xix+302+xix+340 pages Two volumes (bound as one) | MR

[41] N. Masuda; H. Thomas; A. Tonks; B. Vallette The diagonal of the associahedra, J. Éc. polytech. Math., Volume 8 (2021), pp. 121-146 | DOI | Numdam | MR | Zbl

[42] W. H. Mills; D. P. Robbins; H. Rumsey Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, Volume 34 (1983) no. 3, pp. 340-359 | DOI | MR | Zbl

[43] J. Milnor Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, iii+122 pages | MR

[44] J. Milnor; P. Orlik Isolated singularities defined by weighted homogeneous polynomials, Topology, Volume 9 (1970), pp. 385-393 | DOI | MR | Zbl

[45] Associahedra, Tamari lattices and related structures (F. Müller-Hoissen; J. M. Pallo; J. Stasheff, eds.), Progress in Mathematics, 299, Birkhäuser/Springer, Basel, 2012, xx+433 pages (Tamari memorial Festschrift) | DOI | MR | Zbl

[46] L.-F. Préville-Ratelle; X. Viennot The enumeration of generalized Tamari intervals, Trans. Amer. Math. Soc., Volume 369 (2017) no. 7, pp. 5219-5239 | DOI | MR | Zbl

[47] B. Rognerud The bounded derived categories of the Tamari lattices are fractionally Calabi-Yau, Adv. Math., Volume 389 (2021), 107885, 31 pages | DOI | MR | Zbl

[48] M. Rubey; C. Stump et al. FindStat - The combinatorial statistics database, http://www.FindStat.org http://www.findstat.org

[49] P. Seidel More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, pp. 429-465 | DOI | MR | Zbl

[50] P. Seidel Vanishing cycles and mutation, European Congress of Mathematics, Vol. II (Barcelona, 2000) (Progr. Math.), Volume 202, Birkhäuser, Basel, 2001, pp. 65-85 | DOI | MR | Zbl

[51] J. Steenbrink Mixed Hodge structures applied to singularities, Handbook of geometry and topology of singularities III, Springer, Cham, 2022, pp. 645-678 | DOI | MR | Zbl

[52] J. H. M. Steenbrink Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 525-563 | DOI | MR | Zbl

[53] J. Striker A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux, Adv. in Appl. Math., Volume 46 (2011) no. 1-4, pp. 583-609 | DOI | MR | Zbl

[54] D. Tamari The algebra of bracketings and their enumeration, Nieuw Arch. Wisk. (3), Volume 10 (1962), pp. 131-146 | MR | Zbl

[55] W. T. Tutte A census of planar triangulations, Canadian J. Math., Volume 14 (1962), pp. 21-38 | DOI | MR | Zbl

[56] J. West Sorting twice through a stack, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991), Volume 117, 1993, pp. 303-313 | DOI | Zbl

[57] D. Zeilberger A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length n is 2(3n)!/((n+1)!(2n+1)!), Discrete Math., Volume 102 (1992) no. 1, pp. 85-93 | DOI | MR | Zbl

[58] D. Zeilberger Proof of the alternating sign matrix conjecture, The Foata Festschrift, Volume 3, 1996, 13, 84 pages http://www.combinatorics.org/volume_3/abstracts/v3i2r13.html | Zbl

Cited by Sources: