This article deals with a relationship between derived categories of modules over some partially ordered sets and triangulated categories arising from quasi-homogeneous isolated singularities. It produces heuristics for the existence of derived equivalences between posets, using the geometric category as an auxiliary intermediate. The notion of Weight plays a central role as a simple footprint of the derived categories under consideration.
@article{MRR_2025__6__1_0, author = {Fr\'ed\'eric Chapoton}, title = {Posets and fractional {Calabi{\textendash}Yau} categories}, journal = {Mathematics Research Reports}, pages = {1--16}, publisher = {MathOA foundation}, volume = {6}, year = {2025}, doi = {10.5802/mrr.21}, language = {en}, url = {https://mrr.centre-mersenne.org/articles/10.5802/mrr.21/} }
Frédéric Chapoton. Posets and fractional Calabi–Yau categories. Mathematics Research Reports, Volume 6 (2025), pp. 1-16. doi : 10.5802/mrr.21. https://mrr.centre-mersenne.org/articles/10.5802/mrr.21/
[1] Plane partitions. V. The TSSCPP conjecture, J. Combin. Theory Ser. A, Volume 66 (1994) no. 1, pp. 28-39 | DOI | MR | Zbl
[2] Singularities of differentiable maps. Vol. I, Monographs in Mathematics, 82, Birkhäuser, 1985, xi+382 pages | DOI | MR
[3] Mirror symmetry for weighted projective planes and their noncommutative deformations, Ann. of Math. (2), Volume 167 (2008) no. 3, pp. 867-943 | DOI | MR | Zbl
[4] Higher trivariate diagonal harmonics via generalized Tamari posets, J. Comb., Volume 3 (2012) no. 3, pp. 317-341 | DOI | MR | Zbl
[5] A generalized construction of mirror manifolds, Nuclear Phys. B, Volume 393 (1993) no. 1-2, pp. 377-391 | DOI | MR | Zbl
[6] Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 6, p. 1183-1205, 1337 | DOI | MR
[7] How the alternating sign matrix conjecture was solved, Notices Amer. Math. Soc., Volume 46 (1999) no. 6, pp. 637-646 | MR | Zbl
[8] Proofs and confirmations, MAA Spectrum, MAA ; Cambridge University Press, 1999, xvi+274 pages http://links.jstor.org/sici?sici=0002-9890(200101)108:1<85:pactso>2.0.co;2-6 (The story of the alternating sign matrix conjecture) | DOI
[9] On the enumeration of rooted non-separable planar maps, Canadian J. Math., Volume 16 (1964), pp. 572-577 | DOI | MR | Zbl
[10] Sur le nombre d’intervalles dans les treillis de Tamari, Sém. Lothar. Combin., Volume 55 (2005/07), B55f, 18 pages | MR | Zbl
[11] Sur une opérade ternaire liée aux treillis de Tamari, Ann. Fac. Sci. Toulouse Math. (6), Volume 20 (2011) no. 4, pp. 843-869 | DOI | Numdam | MR | Zbl
[12] On the categories of modules over the Tamari posets, Associahedra, Tamari lattices and related structures (Progr. Math.), Volume 299, Birkhäuser/Springer, Basel, 2012, pp. 269-280 | DOI | MR | Zbl
[13] Derived equivalences between alt-Tamari lattices, 2025 (in preparation)
[14] Linear Intervals in the Tamari and the Dyck Lattices and in the alt-Tamari Posets, 2022 | arXiv | DOI
[15] Cubic realizations of Tamari interval lattices, Sém. Lothar. Combin., Volume 82B (2020), 23, 12 pages | MR | Zbl
[16] Left ternary trees and non-separable rooted planar maps, Theoret. Comput. Sci., Volume 233 (2000) no. 1-2, pp. 201-215 | DOI | MR | Zbl
[17] Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992, xvi+263 pages | DOI | MR
[18] Fighting fish, J. Phys. A, Volume 50 (2017) no. 2, 024002, 16 pages | DOI | Zbl
[19] A bijection between Tamari intervals and extended fighting fish, European J. Combin., Volume 110 (2023), 103698, 21 pages | DOI | MR | Zbl
[20] Homological mirror symmetry for singularities, Representation theory—current trends and perspectives (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2017, pp. 75-107 | DOI | MR | Zbl
[21] A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities, Manuscripta Math., Volume 140 (2013) no. 1-2, pp. 195-212 | DOI | MR | Zbl
[22] Exceptional collections for mirrors of invertible polynomials, Math. Z., Volume 304 (2023) no. 2, 32, 16 pages | DOI | MR | Zbl
[23] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[24] Homological mirror symmetry for Brieskorn-Pham singularities, Selecta Math. (N.S.), Volume 17 (2011) no. 2, pp. 435-452 | DOI | MR | Zbl
[25] Homological mirror symmetry for singularities of type D, Math. Z., Volume 273 (2013) no. 3-4, pp. 633-652 | DOI | MR | Zbl
[26] A note on homological Berglund-Hübsch-Henningson mirror symmetry for curve singularities, 2022 | arXiv
[27] Homological Berglund-Hübsch mirror symmetry for curve singularities, J. Symplectic Geom., Volume 18 (2020) no. 6, pp. 1515-1574 | DOI | MR | Zbl
[28] On the classification of quasihomogeneous singularities, J. Singul., Volume 4 (2012), pp. 131-153 | DOI | MR
[29] The combinatorics of weight systems and characteristic polynomials of isolated quasihomogeneous singularities, J. Algebraic Combin., Volume 56 (2022) no. 3, pp. 929-954 | DOI | MR | Zbl
[30] Triangulated categories of matrix factorizations for regular systems of weights with , Adv. Math., Volume 220 (2009) no. 5, pp. 1602-1654 | DOI | MR | Zbl
[31] Calabi-Yau triangulated categories, Trends in representation theory of algebras and related topics (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2008, pp. 467-489 | DOI | MR | Zbl
[32] A survey on maximal green sequences, Representation theory and beyond (Contemp. Math.), Volume 758, Amer. Math. Soc., [Providence], RI, 2020, pp. 267-286 | DOI | MR | Zbl
[33] Cours donné à l’École Normale supérieure (1998) (https://www.lamfa.u-picardie.fr/marin/docs/coursKont.pdf)
[34] On the classification of quasihomogeneous functions, Comm. Math. Phys., Volume 150 (1992) no. 1, pp. 137-147 | DOI | MR | Zbl
[35] Another proof of the alternating-sign matrix conjecture, Internat. Math. Res. Notices (1996) no. 3, pp. 139-150 | DOI | MR | Zbl
[36] Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math., Volume 753 (2019), pp. 239-267 | DOI | MR | Zbl
[37] Universal derived equivalences of posets of cluster tilting objects, 2007 | arXiv | DOI
[38] Universal derived equivalences of posets of tilting modules, 2007 | arXiv | DOI
[39] Treillis et bases des groupes de Coxeter, Electron. J. Combin., Volume 3 (1996) no. 2, 27, 35 pages http://www.combinatorics.org/volume_3/abstracts/v3i2r27.html | DOI | MR | Zbl
[40] Combinatory analysis, Chelsea Publishing Co., New York, 1960, xix+302+xix+340 pages Two volumes (bound as one) | MR
[41] The diagonal of the associahedra, J. Éc. polytech. Math., Volume 8 (2021), pp. 121-146 | DOI | Numdam | MR | Zbl
[42] Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, Volume 34 (1983) no. 3, pp. 340-359 | DOI | MR | Zbl
[43] Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, iii+122 pages | MR
[44] Isolated singularities defined by weighted homogeneous polynomials, Topology, Volume 9 (1970), pp. 385-393 | DOI | MR | Zbl
[45] Associahedra, Tamari lattices and related structures (F. Müller-Hoissen; J. M. Pallo; J. Stasheff, eds.), Progress in Mathematics, 299, Birkhäuser/Springer, Basel, 2012, xx+433 pages (Tamari memorial Festschrift) | DOI | MR | Zbl
[46] The enumeration of generalized Tamari intervals, Trans. Amer. Math. Soc., Volume 369 (2017) no. 7, pp. 5219-5239 | DOI | MR | Zbl
[47] The bounded derived categories of the Tamari lattices are fractionally Calabi-Yau, Adv. Math., Volume 389 (2021), 107885, 31 pages | DOI | MR | Zbl
[48] et al. FindStat - The combinatorial statistics database, http://www.FindStat.org http://www.findstat.org
[49] More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, pp. 429-465 | DOI | MR | Zbl
[50] Vanishing cycles and mutation, European Congress of Mathematics, Vol. II (Barcelona, 2000) (Progr. Math.), Volume 202, Birkhäuser, Basel, 2001, pp. 65-85 | DOI | MR | Zbl
[51] Mixed Hodge structures applied to singularities, Handbook of geometry and topology of singularities III, Springer, Cham, 2022, pp. 645-678 | DOI | MR | Zbl
[52] Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 525-563 | DOI | MR | Zbl
[53] A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux, Adv. in Appl. Math., Volume 46 (2011) no. 1-4, pp. 583-609 | DOI | MR | Zbl
[54] The algebra of bracketings and their enumeration, Nieuw Arch. Wisk. (3), Volume 10 (1962), pp. 131-146 | MR | Zbl
[55] A census of planar triangulations, Canadian J. Math., Volume 14 (1962), pp. 21-38 | DOI | MR | Zbl
[56] Sorting twice through a stack, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991), Volume 117, 1993, pp. 303-313 | DOI | Zbl
[57] A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length is , Discrete Math., Volume 102 (1992) no. 1, pp. 85-93 | DOI | MR | Zbl
[58] Proof of the alternating sign matrix conjecture, The Foata Festschrift, Volume 3, 1996, 13, 84 pages http://www.combinatorics.org/volume_3/abstracts/v3i2r13.html | Zbl
Cited by Sources: