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Posets and fractional Calabi–Yau categories

Frédéric Chapoton

(Recommended by Boris Hasselblatt)

Abstract. This article deals with a relationship between derived cat-
egories of modules over some partially ordered sets and triangulated
categories arising from quasi-homogeneous isolated singularities. It
produces heuristics for the existence of derived equivalences between
posets, using the geometric category as an auxiliary intermediate. The
notion of Weight plays a central role as a simple footprint of the derived
categories under consideration.

To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour

William Blake

Introduction

The aim of this article is to explain a simple idea that starts from the combinatorics
of partially ordered sets (posets) and leads to conjectures about fractional Calabi–Yau
categories and their triangle-equivalences.

Let us start with an infinite family of combinatorial objects, given as the disjoint
union of finite sets Pn indexed, for example, by positive integers. Suppose that for
every n, the cardinality of Pn can be written under the specific shape

|Pn | =

m∏
i=1

(D −di )

m∏
i=1

di

,

where m is a positive integer, d1, . . . ,dm is a multi-set of positive integers, and D is a
positive integer, all depending on n in a regular way.

Then, one can hope for the following statement (♣):

There exists a family of partial orders (Pn ,≤) such that, for all n, the derived
category of (Pn ,≤) is triangle-equivalent to the fractional Calabi–Yau category
associated with a generic isolated quasi-homogeneous singularity with variable
weights (d1, . . . ,dm) and total weight D.

In this statement, the derived category of a poset (P,≤) means the bounded derived
category of finite-dimensional modules over its incidence algebra over a field. The mean-
ing of the category attached to the singularity is some kind of derived Fukaya category,
providing a categorified version of the classical Milnor theory of isolated hypersurface
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singularities. Milnor theory is briefly recalled in Section 1 and the related categorical
framework is considered later in Section 2.

If the property (♣) holds, it has a much more concrete consequence, namely the
Coxeter polynomial of the poset (Pn ,≤) gets identified with the characteristic polyno-
mial of the monodromy for the isolated singularity and can therefore be computed by
just knowing the integers d1, . . . ,dm and D , by results of Milnor and Orlik explained in
Section 1. The data of d1, . . . ,dm and D , satisfying the appropriate conditions, will be
called a Weight.1

As the Coxeter polynomial is also easy to compute directly for any given poset (using
the Coxeter matrix, see Appendix A), this gives a criterion to check if a family of partial
orders on Pn could have the expected property. When the first Coxeter polynomials
for small n are as expected, this gives a strong evidence for the statement (♣) above.
In this case, let us say that the Coxeter criterion holds for this family of posets. This
may seem weak, as it is known that the Coxeter polynomial is not a complete invariant
of triangle-equivalence. The fact that this holds in family improves the solidity of the
Coxeter criterion, as the probability of a random coincidence decrease.

Here is a schematic description of the situation:

posets

triangulated
categories
with Serre

functor

fractional
Calabi–Yau

triangulated
categories

Weights

polynomials
products of
cyclotomic

polynomials

The top-left horizontal arrow sends a poset to the derived category of modules over its
incidence algebra over a field. This is a many-to-one application, as one can easily find
examples of derived-equivalent but not isomorphic posets. The top-right horizontal ar-
row is the Fukaya–Seidel categorification of the Milnor fiber construction. The vertical
arrows from triangulated categories to polynomials are given by the characteristic poly-
nomial of the Auslander–Reiten functor (which is a shifted version of the Serre functor).
As said above, there are direct constructions of these polynomials from posets and from
Weights, which give the diagonal arrows.

This diagram is expected to be fully compatible with the natural monoidal structures,
namely cartesian product of posets, tensor product of triangulated categories, and the
monoid structure on Weights introduced in Section 3. For the bottom line, one can use
a tensor product of polynomials, but we will not need that. This compatibility is known
for the left half of the diagram.

So the Coxeter criterion means that we have a sequence of polynomials coming from
the top-left that can be identified with a sequence of polynomials coming from the top-
right. The main idea is to take this equality as a rather strong hint that the triangulated
categories should be themselves triangle-equivalent.

1We write Weight with a capital letter to make it more clear that it stands for a precise technical definition,
see Definition 1.
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As we will see in the examples below, partial orders on a given combinatorial fam-
ily that satisfy the Coxeter criterion are not necessarily unique. There can very well be
several distinct families of posets with the same cardinalities, all having their derived
categories triangle-equivalent to the same singularity category. In this case, the implied
derived equivalences between the different posets of the same cardinality can some-
times be proved by other means.

Given a family of combinatorial objects, finding some correct partial orders is not
easy in general. Sometimes the most natural partial orders all fail to satisfy the Coxeter
criterion. One can then look for more subtle partial orders on the same combinato-
rial objects, or maybe on other combinatorial objects counted by the same sequence of
numbers.

Another implication is that one can use factorizations in the monoid of Weights to
propose conjectural derived equivalences. If a Weight is associated with a poset P , and
factors into simpler Weights associated with smaller posets Q1, . . . ,Qk , then one should
expect a derived equivalence between P and the cartesian product of posets Q1×·· ·×Qk .
A very simple case is given by the Dynkin quivers D4 andA2 ×A2.

1. Quasi-homogeneous isolated singularities

The theory of singularities of algebraic functions fromCm toC is a very classical topic,
with a vast literature. One could cite for instance the famous classification by Arnold of
rigid isolated singularities by the Dynkin diagrams of typeADE. Even more well-studied
is the case of singularities of quasi-homogeneous algebraic functions, where each coor-
dinate on Cm is given a specific weight and the function is assumed to be homogeneous
for the total degree with respect to these weights.

Let us sketch briefly the celebrated construction of Milnor for isolated singularities.
For more details, the reader may consult [43, 17]. Let f be a quasi-homogeneous poly-
nomial function from Cm to C. Assume that f has an isolated critical point at 0 ∈ Cm

above 0 ∈C. Milnor has shown that over a sufficiently small circle Sε around 0 ∈C, all the
fibers of f (intersected with a small ball around 0 ∈Cm) are smooth and diffeomorphic,
with the homotopy type of a bouquet of µ f spheres of dimension m−1. The fibers have
therefore only one interesting homology group Hm−1, of dimension µ f . This locally-
trivial fibration over the circle Sε is called the Milnor fibration of f and µ f is called the
Milnor number of the singularity.

By turning once over the circle Sε and following the cycles using local triviality of the
Milnor fibration, one gets a linear endomorphism of the homology group Hm−1( f −1(ε)).
This is called the monodromy of the singularity.

In the case of a quasi-homogeneous polynomial f with an isolated singularity, Mil-
nor and Orlik [44] have given an explicit formula for the characteristic polynomial of the
monodromy (or rather for its roots) depending only on the degrees d1, . . . ,dm of the vari-
ables and the total degree D of f . As a special case of this formula, the Milnor number is
given by

(1.1) µ f =

m∏
i=1

(D −di )

m∏
i=1

di

.

Let us now present their formula briefly. The following description is a streamlined
presentation, with slightly modified notations, of Milnor and Orlik result in [44, §3], see
also [43, §9]. Let ui be the numerator of D/di as a reduced fraction, for i = 1, . . . ,m. For
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each divisor j of D , define

(1.2) χ j =
m∏

i=1
ui | j

di −D

di
.

Then for each divisor j of D , there is a relative integer s j such that

(1.3) j s j =
∑
d | j
µ j /d χd ,

where µ is (just here) the standard number-theoretic Möbius function. The characteris-
tic polynomial of the monodromy is then

(1.4)

(∏
j |D

(t j −1)s j

)(−1)m

.

Consider, for example, the degrees (d1,d2,d3) = (2,3,4) and D = 10. Then (u1,u2,u3) =
(5,10,5). One computes that (χ1,χ2,χ5,χ10) = (1,1,6,−14), and it follows that (s1, s2, s5,
s10) = (1,0,1,−2). As a product of cyclotomic polynomials, the characteristic polynomial
is thereforeΦ2

2Φ5Φ
2
10.

1.1. Hodge structure and q-Milnor number. This information about the characteristic
polynomial can be refined as follows.

Let us consider the formula

(1.5)

m∏
i=1

[D −di ]q

m∏
i=1

[di ]q

,

where [d ]q = (qd −1)/(q −1) is the q-analogue of an integer d .
For the degrees (d1, . . . ,dm) and D of an isolated quasi-homogeneous singularity, it is

known that (1.5) is a polynomial in N[q], whose coefficients are the dimensions of the
homogeneous components of the Jacobian algebra of the singularity. This is a classical
statement, see [2], [29, Theorem 6.4] or [52, 5.11].

In this situation, the polynomial (1.5) is also closely related to the eigenvalues of
the monodromy. As shown by J. Steenbrink [52, 51], the homology group Hm−1 car-
ries a mixed Hodge structure, compatible with the monodromy. In the case of quasi-
homogeneous isolated singularities, the dimensions of the successive quotients of the
Hodge filtration can be encoded by the coefficients of a polynomial in q , which accord-
ing to [52, 5.11] turns out to be (1.5).

The polynomial (1.5) in fact also contains complete information on the multiplicities
of the eigenvalues of the monodromy, hence gives an alternative way to access them,
different from the Milnor–Orlik method recalled above. It suffices to look at the coef-
ficients of the unique polynomial representative of (1.5) modulo qD −1 with degree at
most D −1. The coefficients, considered as a cyclic sequence, are then the multiplicities
of the D-th roots of unity as eigenvalues of the monodromy.

For a more precise account of these aspects, see [29, §5, §6]. We give an example
below.

One can note that setting q = 1 in (1.5) recovers the expression (1.1) for the Milnor
number µ f . The expression (1.5) will be called the q-Milnor number of the singularity.

In the example of degrees (2,3,4) and total degree 10, one finds

q12 +q10 +q9 +2q8 +q7 +2q6 +q5 +2q4 +q3 +q2 +1,
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which reduces modulo q10 −1 to

q9 +2q8 +q7 +2q6 +q5 +2q4 +q3 +2q2 +2,

giving the sequence of coefficients 2,0,2,1,2,1,2,1,2,1 for powers of q in increasing
order.

On the other hand, the characteristic polynomial is

(t 5 +1)2(t 4 + t 3 + t 2 + t +1),

as seen at the end of the previous section. The multiplicities of the ten roots of unity
(e2i kπ/10)9

k=0 are therefore 0,2,1,2,1,2,1,2,1,2.
Comparing both sequences, one can see that they are indeed the same up to an

appropriate cyclic shift.

2. Fractional Calabi–Yau categories

Fractional Calabi–Yau categories were introduced by M. Kontsevich around 1998 [33]
as a natural generalization of Calabi–Yau categories, themselves motivated by the prop-
erties of coherent sheaves on Calabi–Yau manifolds. Fractional Calabi–Yau categories
sometimes appear in the semi-orthogonal decompositions of bounded derived cate-
gories of coherent sheaves on algebraic varieties, and in particular Fano varieties, see,
for example, [36].

Recall that a Serre functor in a triangulated category T is an auto-equivalence S of T

such that there is a bi-natural isomorphism

Hom(X ,Y )∗ ≃ Hom(Y ,SX ),

where ∗ is the linear dual over the ground field. For more on this notion, we refer to [6,
31]. The existence of a Serre functor S on a triangulated category is equivalent to the
existence of an Auslander–Reiten translation functor τ. These two functors are unique
up to isomorphism and related by S = τ[1], where [1] is the shift functor. They both exist,
for example, for the bounded derived categories of modules over a finite dimensional
algebra of finite global dimension over a field, see [31, §3.1]. This includes incidence
algebras of finite posets over a field.

A triangulated category T is a fractional Calabi–Yau category if it has a Serre functor
S and there exist integers p and q such that Sq ≃ [p] as functors. Here [p] is the p-th
power of the shift functor. In this case, the Calabi–Yau dimension is the pair (p, q), often
denoted p/q by a common abuse of notation.

2.1. Fukaya–Seidel categories for singularities. Let us keep the same notations as in
Section 1.

Attached to each quasi-homogeneous isolated singularity f , there is a triangulated
category D f which is a categorification of the Milnor geometric theory described in Sec-
tion 1. This category has been defined by Seidel [50, 49] in the context of symplectic ge-
ometry. It is obtained as the derived category (or homology category) of a A∞-category
of Fukaya type, in a directed version, starting from the Milnor fibration and using a mor-
sification.

These categories D f are expected to have the following three properties:

(S0) The Grothendieck group K0(D f ) is identified with the homology group Hm−1, in
such a way that the Auslander–Reiten functor on D f induces a linear endomor-
phism on K0(D f ) which is identified with the monodromy (up to an appropriate
shift).



6 Frédéric Chapoton

(S1) This category D f is fractional Calabi–Yau, with Calabi–Yau dimension (C ,D),
where

(2.1) C =
m∑

i=1
(D −2di ).

(S2) The construction f 7→D f is multiplicative, sending the Thom–Sebastiani sum of
singularities to the tensor product of triangulated categories. This was explicitly
stated as [3, Conjecture 1.3] and is apparently still open.

The first statement seems to be folklore in the domain. To make the appropriate shift
precise would require a close examination of the definition of the category. As far as the
author can tell, the other properties are known in some cases, but still conjectural in
general. Most of the articles on closely related topics refer directly to the original book
by Seidel [49] for the definition of the Fukaya–Seidel categories. Some other relevant
articles are [24, 25, 27, 26, 22, 3].

Note: One could wonder whether the category D f for a generic quasi-homogeneous
polynomial determines the Weight. The category certainly determines the eigenvalues
of the monodromy operator, and this puts strong constraints on the possible q-Milnor
numbers, as explained in Section 1.1.

2.2. About mirror symmetry and B -model. Mirror symmetry suggests the existence
of mirror singularities for isolated quasi-homogeneous singularities in general. This is
known only in some specific cases and has been in particular much studied in the case
of invertible polynomials, as considered by Berglund and Hübsch in [5] and by Kreuzer
and Skarke in [34]. Then more algebraic methods are available to define and study the
same categories, for instance homological matrix factorizations. For a more precise view
on this, the reader may see [30], [20, §4], and [21].

In the language of theoretical physics (and with all the necessary caution), the cat-
egory D f has something to do with the A-model for the Landau–Ginzburg potential f ,
and it should be related to A-branes of this model. The mirror symmetry is supposed to
identify these A-branes with B-branes on the mirror manifold, which seem to be better
understood in mathematical terms.

3. The monoid of Weights

Let us define in this section a monoid W whose elements will be called Weights. Our
notion of Weight is closely related to what is called a weight system in singularity theory,
see, for example, [29].

Definition 1. A Weight is a pair ((d1,d2, . . . ,dm),D) where d1,d2, . . . ,dm and D are posi-
tive integers such that the formula

(3.1)

m∏
i=1

[D −di ]q

m∏
i=1

[di ]q

defines a polynomial inN[q]. This Weight will be denoted (d1, . . . ,dm ;D).
The order of the di is irrelevant. Weights that only differ by multiplying all di and D by

a common positive integer N are considered to be the same.

Note that m = 0 is allowed, as the formula is then the empty product.
One will always assume that di < D −di for all i , as factors where 2di = D do not

contribute to the product (3.1).
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Dividing every di and D by their greatest common divisor and then sorting the di in
increasing order gives a unique canonical representative.

For example, in the case (2,3;8), one finds the fraction

[6]q [5]q

[2]q [3]q
= q6 +q4 +q3 +q2 +1,

so that this is indeed a Weight.
The value at q = 1 of the formula (3.1) for a Weightαwill be called the Milnor number

µα of the Weight. For example, the Milnor number of (2,3;8) is 5.
The expression (3.1) will be called the q-Milnor number of the Weight. Note that

it depends on the choice of a representative, but only up to substitution of q by some
power of q .

3.1. Variations. One can make several variants of the definition above, some weaker
and some stronger.

When the condition on the pair ((d1,d2, . . . ,dm),D) in this definition is weakened to
require only that the value of (3.1) at q = 1 is an integer, this will be called a weak Weight.

One could similarly require that the quotient should be a polynomial in Z[q] with
value at q = 1 inN. We will not use this intermediate notion. It is not clear if one can find
something like this which is not a Weight.

For a given Weight, one can consider a generic polynomial of degree D in variables
x1, . . . , xm of degrees d1, . . . ,dm . In order for such a polynomial to define an isolated hy-
persurface singularity, a stronger condition must be imposed on the Weight, which can
be found, for example, in [28, §2]. Examples of Weights not satisfying this stronger con-
dition, such as (16,18,21,55;165), are displayed in [29, Table 1].

As suggested by a referee, proving this stronger but elementary condition may some-
times be easier than directly showing that the q-Milnor number has coefficients inN by
finding a combinatorial interpretation for these coefficients.

3.2. Product. Let W be the set of all Weights. The set W can be endowed with the fol-
lowing binary operation. In terms of singularity theory, this corresponds to the Thom–
Sebastiani direct sum of hypersurface singularities.

Let α= (a1, . . . , am ; A) and β= (b1, . . . ,bn ;B) be two Weights. Then one defines

(3.2) α×β= (B a1,B a2, . . . ,B am , Ab1, . . . , Abn ; AB),

One can check that this is indeed a Weight. This could also be defined as

α×β= (B ′a1,B ′a2, . . . ,B ′am , A′b1, . . . , A′bn ; lcm(A,B)),

where A′ = A/gcd(A,B) and B ′ = B/gcd(A,B), which is a simpler representative of the
same Weight. One could also define the same operation as disjoint union of the ai and bi

by assuming without loss of generality that A = B .
This defines a commutative and associative product × on the set W , with unit the

empty Weight (;;1).
For example, (3,5;20)× (1;5) = (3,4,5;20).

There are a few interesting morphisms from W to other monoids.
The formula (3.1) evaluated at q = t 1/D defines a morphism to the multiplicative

monoid of Puiseux polynomials in t .
Similarly, the evaluation of (3.1) at q = 1 defines a morphism to the multiplicative

monoidN. This is just the Milnor number.
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From (2.1), one obtains the formula

(3.3)

m∑
i=1

(D −2di )

D
for the Calabi–Yau dimension seen as a positive rational number. This defines a
morphism to the additive monoid Q>0. This is clear when seeing × as concatenation
of Weights sharing the same D . This quantity could be called the central charge of the
Weight.2

For example, the central charge of (2,3,5,5;15) is 2.

3.3. Factorization and prime Weights. Let us say that a Weight is prime if it is not the
product of several strictly smaller Weights, namely with smaller number of degrees.

In order to check that a Weight (d1, . . . ,dm ;D) is prime or not, one needs to look for
non-empty subsets of the di that define a Weight and whose non-empty complement
also defines a Weight (keeping the same D). This can be done using the expression of
q-integers as products of cyclotomic polynomials Φd . In small cases, one can easily
check in this way that some Weight is prime.

As a simple example, let us prove that the Weight (3,4,5,6;15) is prime. The factors in
the q-Milnor number are, after simplification,

(3.4)
Φ2Φ4Φ6Φ12

1
× Φ11

Φ2Φ4
× Φ2Φ10

1
× Φ9

Φ2Φ6
.

Because of Φ6 in its denominator, the fourth term must be grouped with the first one.
Then because of Φ4 in its denominator, the second term must also be grouped with the
first one. Then there remains a Φ2 in the denominator of the result which is forced to
also be grouped with the third term.

Consider now the Weight (2,4,6,7;18) with Milnor number 88. One can check that it
can be written both as

(3.5) (1;9)× (4,6,7;18) and as (1;3)× (2,4,7;18),

where in both factorizations all factors are prime. Something similar happens for the
Weight (3,4,7,10;24). It follows that in the monoid W there is no unique factorization in
prime elements.

4. The Catalan family

In this section and the following ones, we consider several examples of families of
Weights, starting from a simple case.

The Catalan numbers are defined by the formula

(4.1) cn = 1

n +1

(
2n

n

)
,

which can be written as

cn = 2n . . . (n +2)

2. . .n
for n ≥ 1. This comes from the Weight (2,3, . . . ,n;2n+2). In this case, it is known that the
q-Milnor number is a polynomial in q with positive coefficients. Indeed, this polynomial
is enumerating Dyck paths according to the major index, see [48, St000027] and [40].

For small n, the Weights in this family are A1,A2,D5,S1,0,D7 ×E6, using factorization
in W and the notations in the tables of Section B.

2It is one third of the central charge appearing in the related N = (2,2) super-conformal field theory.
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The next Weight in this family can still be described using the notion of invertible
polynomials, as considered in [5] and classified in [34]: it is the Weight corresponding to
the chain type of parameter (7,2,2,2,3).

In general, the Weights in the Catalan family cannot be realized by invertible polyno-
mials in the sense of Berglund–Hübsch. The first impossible case happens for n = 10,
with Milnor number 16796.

It turns out that there are at least two different families of posets that seem to satisfy
the Coxeter criterion.

The first family is made of the Tamari lattices Tn , introduced by Tamari in [54]. They
have been studied a lot since then, in particular as a special case of the Cambrian lat-
tices in the theory of cluster algebras, see for instance [45]. The underlying set is the set
of planar rooted binary trees with n inner vertices and n +1 leaves, endowed with the
partial order whose covering relations are rotations. The cardinality of Tn is known to be
the Catalan number cn .

In the case of the Tamari lattices, the Coxeter polynomial has been computed by op-
eradic methods in [11]. It is therefore possible to check the Coxeter criterion for large
values of n. In principle, one could hope to prove that this general formula coincides
with the formula obtained from the sequence of Weights, although this has never been
done to our knowledge.

Moreover, B. Rognerud has proved in [47] that the derived category of Tn is indeed
fractional Calabi–Yau, of the expected dimension (n(n −1),2n +2).

The second family of posets is even simpler. The underlying set is the set Dn of Dyck
paths of size n, which are lattice paths of length 2n using steps (+1,+1) and (+1,−1),
starting from (0,0), ending at (2n,0) and never going strictly below the horizontal axis.
The number of such paths is known to be cn too. The partial order on Dn is defined by
one path being always weakly below another path. This defines a distributive lattice. In
this case, no general formula is known for the Coxeter polynomials, but one can check
by computer that they coincide with those of the Tamari lattices for n ≤ 9.

All this strongly suggests that the posets Tn and Dn are derived-equivalent, and that
both are triangle-equivalent to the same triangulated category of geometric origin as-
sociated with an isolated singularity. For this reason, this derived equivalence has been
stated as a conjecture in [12].

Recently, some intermediate lattices (named the alt-Tamari lattices) have been in-
troduced in [14], that generalize the previous two families and apparently share the
same Coxeter polynomials. Together with S. Ladkani [13], we plan to establish the de-
rived equivalences among these intermediate lattices. This would in particular solve the
above conjecture on the derived equivalence of the lattices Tn and Dn .

Let us now briefly talk about closely related posets where the Coxeter criterion seems
to hold, for other sequences of cardinalities given by similar formulas. In each case, one
can guess the Weights from the formula.

First there are some posets enumerated by the Fuss–Catalan numbers, namely the
m-Tamari lattices introduced by F. Bergeron and L.-F. Préville-Ratelle [4] and also the
simpler posets of m-Dyck paths under the relation of being weakly below. The larger
family of rational Tamari lattices can also be considered, as they are counted by a similar
formula.

Second, there are the Cambrian lattices associated with a finite Coxeter group W , all
enumerated by the “Coxeter–Catalan number” for W . For simply-laced Coxeter groups,
the derived equivalence between these posets, for a given W and all choices of Coxeter
element, has been proved by Ladkani using quiver techniques in [37].
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Third, there are the partial order on tilting modules (or positive clusters) for a Weyl
group W , enumerated by the “positive Coxeter–Catalan numbers” for W . In this case
too, for simply-laced Coxeter groups, the derived equivalence between these posets, for
a given W and all choices of Coxeter element, has been proved by Ladkani using quiver
techniques in [38].

5. Alternating Sign Matrices

Alternating sign matrices are combinatorial objects generalizing permutation matri-
ces, that appeared in the Dodgson condensation algorithm for computing the determi-
nant. The number of alternating sign matrices of size n is given by the famous formula

(5.1)
n−1∏
k=0

(3k +1)!

(n +k)!
,

which was conjectured by Mills, Robbins and Rumsey [42], first proved by Zeilberger [58]
and proved again by Kuperberg [35] using methods of statistical mechanics. It is an open
problem to find an explicit bijection between alternating sign matrices and totally sym-
metric self-complementary plane partitions, which were enumerated by the same for-
mula by Andrews in [1]. For a detailed account of the full story, see [7, 8].

Lemma 5.1. The formula (5.1) is the Milnor number of the weak Weight

(5.2) ({3k +2, . . . ,n +k}0≤k≤n−k−2;3n).

Proof. Formula (5.1) is the quotient of a product of factorials by a product of factorials.
Consider the k-th and (n −1−k)-th factorials in the numerator, together with the k-th
and (n −1−k)-th factorials in the denominator. This gives the quotient

(3k +1)!(3n −3k −2)!

(n +k)!(2n −k −1)!
.

Assuming that k < n −1−k, this is

(2n −k) · · · (3n −3k −2)

(3k +2) · · · (n +k)
,

which can be written as the product ∏
i

D −di

di
,

where (d1, . . . ,dm) = (3k + 2, . . . ,n + k) and D = 3n. When n is odd and 2k = n − 1, the
middle terms in the numerator and the denominator of (5.1) are both (3k + 1)! hence
can be neglected. So the full expression is indeed associated with this weak Weight. □

In fact, this weak Weight should be a Weight, and its q-Milnor number should be a
polynomial with positive integer coefficients. This can be checked for n ≤ 30, but there
is no known combinatorial statistics to explain this property.

For small n, the Weights in this family areA1,A2,E7,D7 ×E6.
The expected Calabi–Yau dimension is then (2

(n+1
3

)
,3n).

There are several natural partial orders on objects enumerated by formula (5.1). The
first one is the enveloping lattice (or Dedekind–MacNeille completion) of the Bruhat or-
der on the symmetric group Sn , as proved in [39]. These posets do not meet the Coxeter
criterion.

J. Striker has introduced in [53, §5], as part of a more general construction involving
a choice among colors, two families of distributive lattices having (5.1) as cardinalities.
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The first family (for the colors blue, yellow, orange and green in the terminology
of [53]) has elements in bijection with the alternating sign matrices, and is in fact iso-
morphic to the enveloping lattice above.

The second family (for the colors red, yellow, orange and green) has elements in bi-
jection with the totally symmetric self-complementary plane partitions. Experimentally,
the posets in this family do have the correct Coxeter polynomial for n ≤ 5, hence satisfy
the Coxeter criterion. So conjecturally, all these posets should be fractional Calabi–Yau.

As a side remark, one can note that the poset of size 42 in this family seems to be
derived-equivalent to the posets of size 42 in the Catalan family, and they share the same
Weight D7 ×E6.

Remark 5.2. The same idea can be applied to other symmetry classes of plane partitions,
which are often enumerated by a closed formula involving a product. This includes the
full set of plane partitions inside an a ×b ×c box and the famous formula of MacMahon.
This also seems to work for totally symmetric plane partitions (A005157) and cyclically
symmetric plane partitions (A006366). In the totally symmetric case, one observes amus-
ing coincidences:

• in cardinality 66, for the Weight A11 ×E6 with the Weight for the poset of tilting
modules of type F4.

• in cardinality 2431, for the WeightA17×Z13×Q11 with the Weight for the poset of
tilting modules of type E7.

6. The West family

In his famous article [56], West introduced the notion of 2-stack sortable permuta-
tions and conjectured that the number of such permutations on n letters is given by the
formula

(6.1) 2
(3n)!

(2n +1)!(n +1)!
.

This was first proved by Zeilberger in [57].
The formula (6.1) can be written as

(3n) · · · (2n +2)

(3) · · · (n +1)
,

which comes from the weak Weight

(6.2) (3, . . . ,n +1;3n +3).

Here again, it is not clear that the q-Milnor number is a polynomial in q with posi-
tive coefficients. One can check by computer that this is the case for n ≤ 50. Assuming
that this always holds and therefore that (6.2) defines a Weight, one can look for posets
satisfying the Coxeter criterion.

For small n, the Weights in this family are A1,A2,E6,A2 × Z11,E7 × Z13. t The next
Weight in this family can still be described using the notion of invertible polynomials, as
considered in [5] and classified in [34]: it is product of A2 by the Weight corresponding
to the chain type of parameter (7,3,3,4).

In general, the Weights in the West family cannot be realized by invertible polynomi-
als in the sense of Berglund–Hübsch. The first impossible case happens for n = 8, with
Milnor number 9614.

Besides 2-stack sortable permutations, there are several other families of combina-
torial objects with the same cardinality: left-ternary-trees [16], fighting fishes [18], non-
separable planar maps [9] and synchronized Tamari intervals [46]. The last family is in
bijection with the maximal cells in the diagonal of the associahedra [41, 15].

https://oeis.org/A005157
https://oeis.org/A006366
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On these combinatorial objects, one can find several partial orders. One possibility
is by restriction of partial orders on permutations (weak order, Bruhat order, etc.) to the
subset of 2-stack sortable permutations. Another is to use the geometry of the diagonal
of the associahedra, which is naturally oriented.

These tentatives have met no success so far, always failing the Coxeter criterion as
soon as n is not very small. So, the question remains whether there does exist such
a family of posets. One can even hope for the existence of posets whose Hasse dia-
grams would be the oriented 1-skeletons of a sequence of simple polytopes having their
h-vectors given by A082680.

7. The Tamari-intervals family

In the 1960’s, Tutte [55] has enumerated several kinds of rooted planar maps, ob-
taining elegant formulas. Among these, planar rooted triangulations are counted by the
formula

(7.1) 2
(4n +1)!

(n +1)!(3n +2)!
.

This formula can be written as
(4n +1) · · · (3n +3)

(3) · · · (n +1)
,

hence comes from the weak Weight

(7.2) (3, . . . ,n +1;4n +4).

Once again, it is not clear if the q-Milnor number is a polynomial with positive coeffi-
cients. This property can be checked for n ≤ 60, but there is no known combinatorial
statistics to explain this property.

For small n, the Weights in this family areA1,A3,W13,A4 ×W17.
Assuming that (7.2) always defines a Weight, one can look for posets satisfying the

Coxeter criterion. Besides triangulations, there are now several other families of combi-
natorial objects counted by formula (7.1): the set of all intervals in Tamari lattices [10],
extended fighting fishes [19], etc.

So far, no sequence of partial orders with the correct Coxeter polynomials has been
found. The most natural partial order on Tamari intervals, involved in the relation with
the diagonals of the associahedra, is defined by [a,b] ≤ [a′,b′] if and only if a ≤ a′ and
b ≤ b′. It does not meet the Coxeter criterion. The naive partial order by inclusion of
intervals does not work either.

8. Green mutation poset for the cyclic quivers

In the theory of cluster algebras, one can associate mutation graphs to quivers. Using
the notion of green mutations, one can define an orientation of the mutation graph.
When the mutation graph is finite, one obtains finite posets, among which the Tamari
lattice considered in Section 4. For details, see the survey [32].

Let us consider here the sequence of posets defined in this way, starting from the
cyclic quivers on n vertices, with n ≥ 2. In the classification by Fomin and Zelevinsky of
quivers of finite type [23], these quivers have type Dn . The number of elements in the
posets (clusters) is therefore given by the Coxeter–Catalan number of type Dn , which is

(8.1) (3n −2)cn−1,

where cn is the Catalan number (4.1). This can be written as the Milnor number of the
weak Weight

(8.2) (4,2n, [6,9,12, . . . ,3n −3];6n),

https://oeis.org/A082680
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where the subsequence of degrees inside the bracket is an arithmetic progression of
step 3.

One can check that this indeed defines Weights for n ≤ 50.
For small n ≥ 2, the Weights in this family areA2 ×A2,A2 ×E7,A2 ×A5 ×D5,E13 ×S1,0.
Experimentally, the green-mutation partial orders for the cyclic quivers satisfy the

Coxeter criterion for the Weight given above. One therefore expects them to be fractional
Calabi–Yau with the prescribed dimension.

Remark 8.1. Let Catn be the Catalan Weight introduced in Section 4. One can note that
the Weight associated above to the green mutation poset for the cyclic quiver of type Dn is a
multiple of Catn−1. A similar phenomenon seems to happen for the sub-poset consisting of
positive clusters, namely those not meeting the initial cluster, for the WeightAn−1×Catn−1.

Appendix A. Derived categories of posets and Coxeter polynomials

Let (P,≤) be a finite partial order. One can define the incidence algebra of P over
a field, and consider the category of finite dimensional modules over this algebra and
its bounded derived category D(P ). The category D(P ) has finite global dimension and
possesses Serre and Auslander–Reiten functors.

On the triangulated category D(P ), the Auslander–Reiten translation functor τ is an
auto-equivalence. It induces a linear map on the Grothendieck group K0(D(P )), which
is a free abelian group of rank |P |. The matrix of this linear map in the basis made of
classes of simple modules can be described as follows.

Pick any total order on P which is an extension of the partial order ≤. Let LP be the
triangular matrix with coefficient 1 in position (i , j ) if i ≤ j and 0 elsewhere. The Coxeter
matrix CP is then −LP L−t

P , where L−t
P is the transpose of the inverse of LP . The Coxeter

polynomial is the characteristic polynomial of the Coxeter matrix.
The Coxeter polynomial of a poset is concretely available in several computer algebra

systems.

Appendix B. Tables and names

Here are small tables of named Weights, some of which have appeared in the article
to describe the first few Weights in the families. The names come either from quivers,
root systems or singularity theory.

For most of these Weights, one can find at least one poset whose derived category
should be triangle-equivalent to the geometric category associated with the Weight.

Dynkin quivers
An (1;n +1)
Dn (2,n −2;2n −2)
E6 =A2 ×A3 (3,4;12)
E7 (2,3;9)
E8 =A2 ×A4 (3,5;15)

Elliptic root systems

E
(1,1)
6 =A2 ×A2 ×A2 (1,1,1;3)

E
(1,1)
7 =A3 ×A3 (1,1;4)

E
(1,1)
8 =A2 ×A5 (1,2;6)
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Arnold’s unimodal singularities
E12 =A2 ×A6 (3,7;21)
E13 (2,5;15)
E14 =A2 ×A7 (3,8;24)
Z11 (3,4;15)
Z12 (2,3;11)
Z13 (3,5;18)
Q10 =A2 ×D5 (6,8,9;24)
Q11 (4,6,7;18)
Q12 =A2 ×D6 (3,5,6;15)
W12 =A3 ×A4 (4,5;20)
W13 (3,4;16)
S11 (4,5,6;16)
S12 (3,4,5;13)
U12 =A2 ×A2 ×A3 (3,4,4;12)

Arnold’s bimodal singularities
E18 =A2 ×A9 (3,10;30)
E19 (2,7;21)
E20 =A2 ×A10 (3,11;33)
Z17 (3,7;24)
Z18 (2,5;17)
Z19 (3,8;27)
Q16 =A2 ×D8 (3,7,9;21)
Q17 (4,10,13;30)
Q18 =A2 ×D9 (6,16,21;48)
W17 (3,5;20)
W18 =A3 ×A6 (4,7;28)
S16 (3,5,7;17)
S17 (4,7,10;24)
U16 =A2 ×A2 ×A4 (3,5,5;15)

Quadrilateral singularities
J3,0 =A2 ×A8 (1,3;9)
Z1,0 (1,2;7)
Q2,0 =A2 ×D7 (2,4,5;12)
W1,0 =A3 ×A5 (2,3;12)
S1,0 (2,3,4;10)
U1,0 =A2 ×E7 (2,3,3;9)
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