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Abstract. In this note we report some advances in the study of ther-
modynamic formalism for a class of partially hyperbolic systems—cen-
ter isometries—that includes regular elements in Anosov actions. The
techniques are of geometric flavor (in particular, not relying on sym-
bolic dynamics) and even provide new information in the classical case.

For such systems, we give in particular a constructive proof of the
existence of the SRB measure and of the entropy maximizing measure.
We also establish very fine statistical properties (Bernoulliness), and
we give a characterization of equilibrium states in terms of their condi-
tional measures in the stable/unstable lamination, similar to the SRB
case. The construction is applied to obtain the uniqueness of quasi-
invariant measures associated to Hölder Jacobians for the horocyclic
flow.

1. Introduction

Let M be a closed Riemannian manifold and f : M → M be a diffeomorphism. The
study of the statistical properties of f , and in particular its invariant measures, provides
a powerful tool to understand the dynamical properties of the map. Let us recall that
a Borel probability measure µ on M is f -invariant if f∗µ = µ, where f∗µ(A) = µ( f −1 A),
and denote by Prf (M) the set of all such measures on M .

For maps having rich dynamics, the set Prf (M) is usually very complicated, so fur-
ther restrictions have to be imposed in order to obtain meaningful results. A particularly
important choice, both from the theoretical and applied point of view, are the so-called
equilibrium states; these are f -invariant measures obtained by a variational principle
associated to some real valued map. See part 2.1 for the precise definition.

The study of such types of measures and their properties (thermodynamic formal-
ism) is notably well developed for completely hyperbolic systems (Anosov, or more gen-
erally, Axiom A). The reader can consult [5] for an introduction to these topics. Notwith-
standing this, under very mild relaxations of the hyperbolicity hypothesis, the panorama
becomes much less understood, even in the partially hyperbolic case, which is one of the
most extensively researched types of systems besides hyperbolic ones.

In the present note we announce an advance in this theory and report on new meth-
ods to study some natural classes of partially hyperbolic systems, as are the ones deter-
mined by (regular elements of) Anosov Lie group actions. We point out the existence
of other geometrical approaches to study equilibrium states in the partially hyperbolic
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setting, as for example the work of Spatzier and Vischer [36], studying isometric exten-
sions of hyperbolic systems, and the recent article of Climenhaga, Pesin, and Zelerow-
ics [11], where the authors use geometric measure theory in a framework similar to ours.
Some of our results are comparable to the second cited work, but the methods that we
present are completely different, and they allow us to have more control over the equilib-
rium measures, particularly in terms of their conditional measures along the invariant
foliations. This is evidenced by the very fine statistical properties what we are able to
prove, not only for the system but also for the referred invariant foliation. In the recent
preprint [3], Bonthonneau, Guillarmou, and Weich study SRB measures for abelian ac-
tions, instead of an individual regular element as in our case. The techniques in this last
cited work are of functional analytic type, using anisotropic Sobolev spaces and Fred-
holm theory. It seems that our approaches may be complementary to theirs. In any
case, the synergy between the other available methods and ours stands as an interesting
problem to investigate.

2. Measures along leaves of invariant foliations

2.1. Basic thermodynamic formalism. Consider a compact metric space (M ,d), and
let f : M → M be continuous map. Given x ∈ M ,ε > 0,n ∈ N we denote by D(x,ε) the
open disc of center x and radius ε, and by D(x,ε,n) the open (ε,n)-Bowen ball centered
at x,

D(x,ε,n) = {
y ∈ M : d( f j x, f j y) < ε, j = 0, . . . ,n −1

}
;

denote

s(ε,n) = inf

{
#E : M = ⋃

x∈E
D(x,ε,n)

}
.

Definition 2.1. The topological entropy of f is the quantity

htop( f ) = lim
ε7→0

limsup
n 7→∞

log s(ε,n)

n
.

Topological entropy is perhaps the most important topological invariant for contin-
uous maps, measuring (loosely speaking) the exponential rate of expansion between
orbits. We refer the reader to [37] for a introduction to this theory, and the proof of the
facts below.

It so happens that it is also important to consider some weighted versions of the pre-
vious quantity. For ϕ : M → R a continuous map (called the potential in this theory),
denote

S(ε,n) = inf

{ ∑
x∈E

eSnϕ(x) : M = ⋃
x∈E

D(x,ε,n)

}
, Snϕ=

n−1∑
i=0

ϕ◦ f i .

Definition 2.2. The topological pressure associated to the system ( f ,ϕ) is

P f
top(ϕ) = lim

ε7→0
limsup

n 7→∞
logS(ε,n)

n
.

Observe that htop( f ) = Ptop( f ,0). There is also a metric version of the previous con-
cepts; to state it let us recall thatµ ∈Prf (M) is ergodic (µ ∈ Ergf (M)) if anyψ ∈ L2(M ,µ)
satisfying f ◦ψ=ψ-a.e. is constant almost everywhere.

Definition 2.3. Let µ be an ergodic measure. Then the metric entropy of f with respect
to µ is

hµ( f ) = lim
ε→0

liminf
n→∞

− logD(x,ε,n)

n
,
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and if ϕ is a potential, the metric pressure of ( f ,ϕ) with respect to µ is

Pµ( f ,ϕ) = hµ( f )+
∫
ϕdµ.

The limit above exists µ-a.e., see [7]. We then have the following:

Theorem (Variational Principle - Walters). It holds that

Ptop( f ,ϕ) = sup
µ∈Ergf (M)

Pµ(ϕ).

Definition 2.4. µ ∈ Ergf (M) is an (ergodic) equilibrium state if Ptop( f ,ϕ) = Pµ( f ,ϕ).

2.2. Center isometries. We now specify the type of map to which our results apply.

Definition 2.5. Let M be a closed manifold. A diffeomorphism f : M → M is a center
isometry if there exist a continuous splitting of the tangent bundle of the form T M =
E u ⊕E c ⊕E s and a (at least continuous) Riemannian metric ‖·‖ such that

(1) dimE u ,dimE s ≥ 1;
(2) E u ,E s ,E c are D f -invariant in the sense that for every x ∈ M ,D f (E∗

x ) = E∗
f x ;

(3) for every x ∈ M , for every unit vector v∗ ∈ E∗
x ,

∥∥Dx f (vc )
∥∥ = 1,

∥∥Dx f n(v s )
∥∥ < 1,

and
∥∥Dx f −1(vu)

∥∥< 1.

Typical examples of such maps are group extensions of Anosov systems, and regular
elements of Anosov actions [20]. We refer the reader to the survey article [19] for basic
information on these systems, and in particular for a discussion of the following:

(∗) all bundles E s ,E c ,E c ,E cs = E c ⊕ E s ,E cu = E c ⊕ E u are integrable to foliations
W s ,W c ,W u ,W cs ,W cu that are invariant under f , that is, f permutes their leaves.
Moreover, W cs ,W cu are sub-foliated by leaves of W s ,W c and W u ,W c , respec-
tively. Finally, W s is exponentially contracting in the sense that f exponentially
contracts the corresponding induced distances on leaves, whereas W u is expo-
nentially expanding.

Our first central result is the next theorem.

Theorem 2.1. Let f : M → M be a center isometry of class C 2 such that every leaf of
W s ,W u is dense. Let ϕ : M →R be a Hölder potential that is either

(1) constant on leaves of W c , or
(2) ϕ=− logdetD f

∣∣E u (SRB case).

Then there exist P ∈ R and families of measures µu = {
µu

x

}
x∈M , µs = {

µs
x

}
x∈M , µcu ={

µcu
x

}
x∈M , µcs = {

µcs
x

}
x∈M such that for every x ∈ M

(1) the measure µ∗,∗ ∈ {u, s,cu,cs}, is a Radon measure on W ∗(x) of full (relative)
support, and y ∈W ∗(x) implies µ∗

x =µ∗
y ;

(2) the following quasi-invariance properties are satisfied:
(a) µσf x = eP−ϕ f∗µσx , σ ∈ {u,cu},

(b) µσf x = eϕ−P f∗µσx , σ ∈ {s,cs}.

The method of the proof is a generalization of the arguments used by Margulis for
studying the entropy maximizing measure (ϕ≡ 0) in mixing hyperbolic flows [24].

A consequence of the above is that the foliation W u is absolutely continuous with
respect to the family µcs . To explain this, consider x0, y0 in the same leaf of W u and let
holu = holu

x0,y0
: A(x0) ⊂ W cs (x0) → B(y0) ⊂ W cs (y0) is the Poincaré map that sends x0

to y0. Then
(holu)−1

∗ µcs
y0

= Jacu
x0,y0

·µcs
x0
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where

(2.1) Jacu
x0,y0

(x) =
∞∏

j=1

eϕ◦ f − j (holu x)

eϕ◦ f − j (x)
.

Sketch of the proof. By (2) we get that f −nµcs
x0

= eSnϕ◦ f −n+1−nPµcs
f −n x0

, and similarly for y0.

For x ∈ A(x0), y = holu(x) ∈ B(y0), the points f −n x, f −n y approximate each other expo-
nentially fast with n, therefore by the Hölder assumption on ϕ, the difference∣∣Snϕ( f −n+1(x))−Snϕ( f −n+1(x))

∣∣
is bounded in n, thus implying that Jacu

x0,y0
(x) is well defined. Finally, by invariance of

the foliations, holu x0, y0 = f n ◦holu
f −n x0, f −n y0

◦ f n , and representing holu
f −n x0, f −n y0

in ex-

ponential charts near f −n x0 one sees that this map approximates uniformly the identity.
From the above facts follows the claim. �

Similar considerations can be made to theµcu ,W s . We now define on each leaf W u(x)
∈W u a projective class of measures [νu

x ] where

(2.2) νu
x =∆u

x µ
u
x , ∆u

x (y) :=
∞∏

k=1

eϕ◦ f −k (y)

eϕ◦ f −k (x)
, y ∈W u(x).

The function ∆u
x : W u(x) → R is continuous, and if x ′ ∈ W u(x), νu

x′ = ∆u
x′ (x)νu

x . Further-
more, we have

f −1νu
f x =∆ f x ◦ f · f −1µu

f x =∆ f x ◦ f ·eP−ϕµu
x = eP−ϕ(x)νu

x .(2.3)

3. Construction of the equilibrium state

We will now use the families of measures given in Theorem 2.1 to construct an equi-
librium state for the system ( f ,ϕ). We keep the assumptions of that theorem for the rest
of the article.

Definition 3.1. If F ⊂ M n is a foliation of codimension q we say that an open set U ⊂ M
is foliation box of F if it is homeomorphic to C = (−1,1)n−q × (−1,1)q by a homeomor-
phism sending F

∣∣U to the horizontal foliation of C . In this case the embedded discs of
U corresponding to the vertical foliation of C will be called the vertical slices of U .

Fix a foliation box U of W u together with a vertical slice W , that without loss of gener-
ality can be assumed to be a disc in some W cs (x0). For A ⊂U open, define the function
αU ,W,A : W → R by αU ,W,A(w) = νu

w (A ∩W u(w,U )), where W u(u,U ) is the connected
component of W u(w)∩U that contains w . This function is Borel measurable (in fact,
semi-continuous).

Now consider the Borel regular measure mU ,W on U determined by

A ⊂U open ⇒ mU ,W (A) =
∫

W
αU ,W,A(w)dµcs

x0
(w).

The key property is the following.

Proposition 3.1. If W ′ is another vertical slice of U then mU ,W = mU ,W ′ .

Proof. Without loss of generality, assume W ′ ⊂ W cs (x ′
0), and consider h = holu

w0,w ′
0

:

W → W ′ the Poincaré map. For A ⊂ U open and w ∈ U denote Aw = A ∩W u(w,U );
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then

mU ,W ′ (A) =
∫

W ′
νu

w ′ (Aw ′ )dµcs
w ′

0
(w ′) =

∫
W
νu

h(w)(Ah(w))Jacu
w0,w ′

0
(w)dµcs

w0
(w)

=
∫

W

(
νu

h(w)(Aw )
+∞∏
k=1

eϕ◦ f −k h(w)

eϕ◦ f −k (w)

)
dµcs

w0
(w)

=
∫

W
νu

w (Aw )dµcs
w0

(w) = mU ,W (A). �

We write mU = mU ,W where W ⊂U is any vertical slice. As a consequence, we have
that if U ,U ′,U ′′ are foliation boxes of W u with U ∪U ′ ⊂U ′′ then mU = mU ′ . We can thus
fix a finite covering

{
Ui

}r
i=1 of M by foliation boxes of W u and define a Borel probabil-

ity measure mϕ on M such that for every i it holds mϕ

∣∣Ui = c ·mUi , where c > 0 is a
normalization constant.

It is not hard to realize that mϕ is f -invariant (compare (1) and (2) in Theorem 2.1).
The following is also true.

Theorem 3.1.

(1) mϕ is the unique equilibrium state for the potential ϕ and P = Ptop( f ,ϕ); in par-
ticular mϕ is ergodic.

(2) If U is a sufficiently small foliation box centered at x ∈ M, then mϕ

∣∣U is equivalent
to µu

x ×µcs
x .

(3) There exists K ≥ 0 only depending on ϕ such that for every ε > 0 there exists
c(ε) > 0 satisfying for every x ∈ M ,n ≥ 0

c(ε)−1e−K n ≤ mϕ(D(x,ε,n))

eSnϕ(x)−nPtop(ϕ)
≤ eK nc(ε).

If the potential is constant along leaves of W c then one can take K = 0.

Uniqueness implies ergodicity, by standard arguments. The last part is a general-
ization of the so-called Gibbs property, a concept of central importance in statistical
physics, see [32].

4. Characterization of equilibrium states in terms of conditional measures

In hyperbolic systems (say, taking E c = 0 in Definition 2.5), a particularly relevant
measure is the SRB measure. This is an f -invariant measure µ that can be characterized
by one of the two following equivalent conditions:

(1) µ is an equilibrium state for the the potential ϕ=− logdetD f
∣∣E u ;

(2) the conditionals of µ induced in leaves of W u are absolutely continuous with
respect the induced Lebesgue measure in the leaf.

This notion was introduced first by Sinai in [35] and developed by Ruelle and Bowen [31,
4, 6]. It is difficult to overestimate the importance of SRB measures in ergodic theory; the
survey article [38] remains as an excellent introduction to the subject, and the reader can
also check [2] for more recent developments.

Let us explain the second condition. Given a Borel probability m on M and a family
of measures ηu = {

ηu
x

}
x∈M on the leaves of W u one says that m has conditionals abso-

lutely continuous/equivalent to ηu if for some1 measurable m-partition ξ subordinated

to the partition by leaves of W u the induced conditional measures mξ
x are absolutely

continuous/equivalent with respect to ηu
x , for m-a.e.; in this part we use freely the the-

ory of conditional measures as developed, for example, in [30]. Going back to (2), for

1Equivalently, for every measurable partition.
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SRB measures the family ηu is given by the corresponding induced Lebesgue measures
on leaves of W u . Let us also point out that this characterization of SRB measures for
(non-hyperbolic) systems is consequence of the very general results of Ledrappier and
Young [21, 22], a culmination of several other important contributions that for the sake
of keeping this presentation short, we refer to the above cited articles for the references.

While trying to obtain a similar characterization for other equilibrium states, the dif-
ficulty is the absence of families of measures to compare with. Here we solve this prob-
lem, that even for classical hyperbolic system remained unknown until now (observe
that if E c = 0 then any potential is automatically constant along center leaves).

Theorem 4.1. Let m ∈ Prf (M) and assume that with respect to some2 partition ξ we
have that mx ¿µu

x for m-a.e.(x). Then m is an equilibrium estate (a posteriori, m = mϕ).

5. Bernoulli property of the equilibrium state

We can say more about the statistical properties of the system ( f ,mϕ) besides its er-
godicity. A much stronger property is the so-called Kolmogorov property, that can be
characterized as follows.

Definition 5.1. For m ∈ Prf (M) we say that ( f ,m) has the Kolmogorov property if its
Pinsker σ-algebra Pin( f ,m) is trivial, where Pin( f ,m) is generated by{

ξ countable measurable partition : Hm(ξ) <∞,hm( f ;ξ) = 0
}

.

Above hm( f ;ξ) corresponds to the entropy of f in the partition ξ; see [37].
There is a useful characterization of Pin( f ,m). Given X ⊂ M we say that it is

• s-saturated (u-saturated) if x ∈ X ⇒W s (x) ⊂ X (resp. W u(x) ⊂ X );
• bi-saturated if it is both s and u saturated;
• m-essentially s-saturated (u-saturated) if there exists a s-saturated (u-saturated)

Borel set X0 so that m(X∆X0) = 0.

Theorem 5.1 (Ledrappier-Young [21]). If X ∈ Pin( f ,m) then X is both m-essentially s-
saturated and m-essentially u-saturated.

Our argument to show the Kolmogorov property is based on the program to estab-
lish stable ergodicity for conservative systems, developed originally by Grayson, Pugh,
and Shub [16] and extended by Pugh and Shub [27] and several other authors, in partic-
ular Burns and Wilkinson [8] and Hertz, Hertz, and Ures [18]. These methods are very
geometrical but rely on the properties of the Lebesgue measure (in particular, its con-
ditionals on leaves of the associated invariant foliations); in our case the corresponding
measures µu ,µcs are more difficult to deal with, so a non-trivial adaptation is necessary.

Fix then X that is m-essentially s-saturated: we will show that it coincides with a s-
saturated set D(X ) that corresponds to the density points of some dynamically defined
differentiation basis.

Choose small numbers 0 < ε,σ< 1 and define the ∗-juliennes as

J u
n (x) := f −n(W u( f n x;ε))

J s
n(x) := f n(W s ( f −n x;ε))

B c
n(x) :=W c (x;σn)

J cu
n (x) :=⋃

y∈B c
n (x)

J u
n (y)

J scu
n (x) :=⋃

y∈J cu
n (x)

J s
n(y).

2Of the type considered in [21].
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By a careful control of the sizes of the juliennes we are able to deduce that J scu ={
J scu

n (x) : x ∈ M ,n ∈N}
is a Vitali differentiation basis (cf. [17]) and also the following.

Theorem 5.2. For every Borel set X ⊂ M, the set D(X ) of its density points with respect
to the basis J scu is coincides mϕ-a.e. with X , and is s-saturated. Therefore, any mϕ-
essentially s-saturated set coincides mϕ-a.e. with a s-saturated set.

The above theorem implies that ( f ,mϕ) has the Kolmogorov property due to the
fact that every leaf of W s is dense (minimality of W s ): given X ∈ Pin( f ,mϕ) the sets
D(X ),D(X c ) are s-saturated, therefore if 0 < mϕ(X ) < 1 we will have density points of X
and X c arbitrarily close, contradicting their definition.

After establishing the Kolmogorov property, we improve the result and show that in
fact the system ( f ,mϕ) is isomorphic to a Bernoulli scheme.

Definition 5.2. Let m ∈Prf (M). The system ( f ,mϕ) is Bernoulli if its induced stochastic
process is isomorphic to the Bernoulli process with finite marginal distribution.

Equivalently, ( f ,mϕ) is measure theoretically isomorphic to a map σ : {1, . . . , N }Z →
{1, . . . , N }Z, σ({xn}n) = {xn+1}n , where the σ-invariant measure is the product measure
induced by some finite distribution on {1, . . . , N }.

Using the Kolmogorov property, we are able to adapt the arguments of Ornstein and
Weiss [25] for the time-one map of the geodesic flow to our setting and prove

Theorem 5.3. ( f ,mϕ) is Bernoulli.

Again, a non-trivial amount of work is required since the Ornstein and Weiss method
is adapted for the Lebesgue measure, whereas in our case the control in the conditionals
is necessarily more delicate.

6. Applications to the rank-one case: unique
ergodicity of quasi-invariant measures

Our results are a generalization of the classical theorems for hyperbolic diffeomor-
phisms and flows [31], that is, rank-one Anosov actions (of Z or R). In these cases the
results can be obtained using the powerful tool of symbolic dynamics, which permits
to reduce the study of the smooth map to a more manageable symbolic model. Regret-
tably, this technology becomes much more intricate outside hyperbolic systems, and
although Sarig made some recent breakthrough in establishing symbolic models for a
larger class of systems [33], the tools become more difficult to work and seem to require
non-uniform hyperbolicity (which is never satisfied for center isometries).

In spite of the applicability of symbolic dynamics to the study of hyperbolic systems,
our geometrical method gives some new information even in this classical setting. We
will enunciate one illustrative result.

Suppose that f : M → M is an hyperbolic diffeomorphism such that dimE u = 1,
which with no loss of generality can be assumed to be oriented. Then E u is tangent
to the orbits of a flow Φu = {

Φu
t : M → M

}
t∈R, called the horocyclic flow. This is a pro-

totype of parabolic flow; the dynamics of such systems have several consequences in
geometry and number theory; see [13] for a discussion.

The following celebrated theorem is originally due to Furstenberg [15], while the ver-
sion below is due to Marcus [23].

Theorem 6.1 (Furstenberg). If f is a hyperbolic map of class C 2 such that every orbit
of Φu is dense, then Φu is uniquely ergodic. That is, there exists only one (probability)
measure invariant underΦu .

It follows that every orbit ofΦu is equidistributed in M.
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We remark that no example of hyperbolic map not satisfying the minimality condi-
tion is currently known. Above, a Borel measure µ is said to be invariant under flow if its
invariant under everyΦu

t . A more general notion is the following.

Definition 6.1. Given a flow Ψ = {ψt }t on a M , a measure µ is conformal for Ψ if there
exists a family of positive functions J = { Jt : M →R>0 }, called the Jacobian of Ψ with
respect to µ such that for every t ∈R,

(Φu
−t )∗µ= Jtµ.

This definition was given by Patterson in [26] in a different context (limit sets for
Fuchsian groups) and has an important role in geometry and ergodic theory. See, for
example, [14, 28]. The definition for diffeomorphisms is analogous.

The following is a remarkable existence and uniqueness result for conformal mea-
sures.

Theorem 6.2 (Douady and Yoccoz [12]). Let f :T→T be a C 2 diffeomorphism of the cir-
cle with irrational rotation number. Then for every s ∈ R there exists a unique conformal
measure with Jacobian s ·D f .

A particularly natural Jacobian for the flowΦu is obtained by taking J = Jacu (cf. (2.1)).
Using our methods we are able do prove the following theorem.

Theorem 6.3. In the cited hypotheses, letϕ : M →R be a Hölder function and consider the
multiplicative cocycle Jacu

x0,y0
that it defines. Then there exists a unique quasi-invariant

measure forΦu with Jacobian Jacu .

This generalizes Furstenberg’s result and shows some strong rigidity in the possible
dynamically relevant measures for the horocyclic flow outside its invariant one. The
above theorem has also a version for hyperbolic flows; for the particular case of the geo-
desic flow in an hyperbolic manifold, the previous result was first established by Babillot
and Ledrappier [1]. See also Schapira’s article [34].

Comparing with Douady and Yoccoz’ result, one gets enough evidence for the exis-
tence of some rigidity phenomena in the set of invariant measures of parabolic systems.
One can ask the following:

Question. Let Φ be a minimal parabolic flow and J be a non-negative multiplicative
cocycle. Does there exist a unique conformal measure with Jacobian J?

A particular instance of parabolic flows are unipotent flows; due to the general results
for such type of system obtained by Ratner [29] (and others), a positive answer of the
above question in this setting would be very interesting.

7. Concluding remarks

In the present note we gave a resume of some new geometrical methods to study
thermodynamic formalism for generalizations of hyperbolic systems. These methods
seem to be generalizable to other situations and hopefully will shed some light outside
the hyperbolic realm.

All the reported results in this article are in preprint form in [9] and [10].
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