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Abstract. We prove that we can generate “a lot” of random normal
numbers (in the sense of full Hausdorff dimension), which are out-
side the scope of Borel’s Normal Number Theorem (in the sense of zero
Lebesgue measure). The ingredient is to run Brownian motion over a
specific Cantor-like time-set. These are closely related to an equidis-
tributed property of some dynamical orbit with random inputs, which
itself is new and significant.

1. Main Result

In this short article, we prove that, for Brownian motions living in the unit interval
and in the two-dimensional torus, with probability 1, there are associated sets of normal
numbers that are of full Hausdorff dimension and of zero Lebesgue measure. We start
with the one-dimensional case. For this, we use a self-similar two-fourths Cantor set,
denoted as C4,2, by which we mean the limit set of the iterated scheme to start with
dividing [0,1] into 4 equal subintervals and removing the second and the third ones, and
then to proceed the iteration in a self-similar way. The C4,2 is a Hausdorff β-set, with β=
ln2/ln4 = 1/2. The hβ(·) denotes the Hausdorff β-dimensional measure; the dimH (·)
denotes the Hausdorff dimension, and the Lebd (·) denotes the Lebesgue measure in the
Euclidean space Rd . For more terminologies, see those explained below.

Theorem 1.1. Let B̄(t ), t ∈ [0,1], be the Brownian motion in the unit interval of R, ob-
tained by the modulus 1 values of Brownian motion B(t ) in the real line. With probabil-
ity 1, for h1/2-almost every t ∈C4,2 ⊂ [0,1], B̄(t ) is normal in every given base b. Moreover,
let N4,2 denote the (random) set of all those t ∈ C4,2 such that B̄(t ) is a normal number;
then, with probability 1, dimH (B̄(N4,2)) = 1, while Leb1(B̄(N4,2)) = 0.

A number x ∈ [0,1] is said to be (simply) normal in an integer base b > 1 if the b-digits
expansion of x := ∑∞

n=1 xnb−n , with 0 ≤ xn ≤ b −1 and xn < b −1 infinitely often (which
ensure that the expansion is infinite), has the asymptotic frequency 1/b; that is, for each
d : 0 ≤ d ≤ b −1,

lim
n→∞

]{k ≤ n : xk = d}

n
= 1

b
,

where ] denotes cardinality. We refer to Harman [5] and Khoshnevisan [8] for surveys
on normal numbers. We should remark that, in this short article, our main results are
normality in any given base, and thus the elaborated notions for simple/entire/absolute
normality in these surveys (which are all due to Émile Borel) are not used, for the con-
venience of reading. We refer to Mörters and Peres [10] for a monograph on Brownian
motions.
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Remark 1.2. We may call that the random point B̄(t ) appearing in the conclusion of
Theorem 1.1 a Brownian normal number. Then, the dimH (B̄(N4,2)) = 1 result of Theo-
rem 1.1 tells us that such random normal numbers are ‘quite a lot’; whilst the set B̄(N4,2)
is of Lebesgue measure 0, and thus such Brownian normal numbers are outside the scope
of the classical Borel Normal Number Theorem (which says that Lebesgue almost every
number in [0,1] is normal in any given base b).

Remark 1.3. In Theorem 1.1, we use C4,2 as our “fractal time-set”; we can consider other
Cantor-like set as our time-set; see Section 2 of Laba [9] for constructions of general Can-
tor sets (we can choose here t , N to have ln t/ln N = 1/2, say, t = 3 and N = 9); that article
discusses topics related to Fourier decay of fractal measures. We should mention that,
firstly the self-similarity construction of C4,2 is crucial, and secondly the more familiar
middle-thirds Cantor set (start with dividing [0,1] into three equal ones and removing
the middle one) does not fit our need (see Remark 1.6). Therefore, the C4,2 is an exact
choice for Theorem 1.1.

We state the two-dimensional version as follows.

Theorem 1.4. Let B̄(t ), t ∈ [0,1], be the Brownian motion living in the two-dimensional
torus T2. With probability 1, the random set of planar Brownian normal numbers in
[0,1]2 (both the x- and the y- components are normal) is of Hausdorff dimension 2 and of
planar Lebesgue measure 0.

The proofs of Theorems 1.1 and 1.4 have three parts: normality, full Hausdorff di-
mension, and zero Lebesgue measure. The normality can be derived as a consequence
of the following more general equidistribution result, which is new and significant as to
our knowledge.

Theorem 1.5. Given N ≥ 1, d ≥ 1, and H : 0 < H < 1. Let X̄ (t ) be an N-parameter
fractional Brownian motion in the d-dimensional torus Td , with Hurst index H, and
let T : Td → Td be an expanding endomorphism. Given a compact E ⊂ RN which is a
Hausdorff β-set, with β≤ Hd. With probability 1, for hβ-almost every t ∈ E, the sequence

xn := T n(X̄ (t )),n = 0,1,2, . . ., is an equidistributed sequence in Td ; that is, for each ball
B ⊂Rd ,

lim
n→∞

]{k ≤ n : xk ∈ B}

n
= µ(B ∩Td )

µ(Td )
,

where µ denotes the Haar measure for Td , identified as the Lebesgue measure mod 1.

Remark 1.6. Theorem 1.5 does not hold in case β> Hd (see the paragraph in Section 2
located immediately above the proof of Theorem 1.1); in particular, Theorem 1.5 can
only directly apply to β ≤ 1/2 for the linear Brownian path (for which N = d = 1 and
H = 1/2). However, in this aspect, we can have a more general statement via indications
by one referee; see the context of the proof of Theorem 1.1. Moreover, Theorem 1.5 can
be proceeded for (N ,d) Gaussian fields more general than fBm, indeed it works for a
Gaussian field with stationary increments for which the spectral measure satisfies cer-
tain asymptotic index conditions; see Shieh and Xiao [11] for a detailed description of
such fields.

In applications of Theorem 1.5 to Theorems 1.1 and 1.4, we need only the 1-parameter
case; the the following 2-parameter case is of its own interest and we list it separately.

Corollary 1.7. Let B̄(s, t ) be the 2-parameter Lévy’s Brownian motion living in the 3-
dimensional torus T3, and let T : T3 → T3 be an expanding endomorphism. With prob-
ability 1, for (h1/2 ×Leb1)-almost every (s, t ) ∈C4,2 × [0,2π], the sequence T n(B̄(s, t )),n =
0,1,2, . . ., is an equidistributed sequence in T3.
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Remark 1.8. The product set C4,2 × [0,2π] is called a Cantor target in Chapter 7 of Fal-
coner [3], as an example of product fractals in R2 (we replace his middle-thirds Cantor
set there by C4,2 to meet our need).

We explain the terminologies in our results as follows; we refer to the books by Ka-
hane [7] and by Falconer [3]. By an N -parameter d-dimensional fractional Brownian
motion, “(N ,d) fBm” for brevity, it means an N -parameter centered Gaussian process
X (t ) = (X1(t ), . . . , Xd (t )), t ∈RN , with values in Rd , the components X j (t ), j = 1, . . . ,d , are
independent and are distributed as a real-valued centered Gaussian process Y (t ) which
is with stationary increments and with incremental variance

E[(Y (t )−Y (s))2] = cH |t − s|2H , s, t ∈ RN .

The H : 0 < H < 1 is called the Hurst index of the process, and the constant cH is assumed
to be 1. The case N = 1, H = 1/2 then determines the Brownian motion in Rd , and the
case N ≥ 2, H = 1/2 is usually referred as a N -parameter Lévy’s Brownian motion. We
assume, without loss of generality, that the sample paths of an fBm are continuous, and
we refer to Chapter 18 of [7] and Chapter 16 of [3] for descriptions of (N ,d) fBm’s (in [7],
his γ there is our 2H). For any x ∈ Rd let x̄ be the unique point in the d-dimensional
torus Td := Rd /Zd obtained by taking each component of x mod 1; notice that T1 =
[0,1]. For a process X (t ) in Rd , X̄ (t ) is then the corresponding process in the torus Td .
By a Hausdorff β-set in Rm , it means a compact set E ⊂ Rm for which 0 < hβ(E) < ∞;
here the hβ(·) means Hausdorff β-dimensional measure, and one may see Chapter 10
of [7] and Chapter 2 of [3] for details. The two-fourths Cantor set C4,2 in Theorem 1.1 is
adapted from p. 132 of [7] (we use his ξ= 1/4 there); as it is mentioned there, h1/2(C4,2) =
1, so that C4,2 is a Hausdorff β-set with β = 1/2. By an expanding endomorphism T on
T d , we mean a linear transformation T : Td → Td such that the singular values of the
d ×d matrix A determined by T are strictly greater than 1 (when A is a normal matrix,
the expanding means that the absolute value of each eigenvalue of A is strictly greatly
than 1).

A perspective: Firstly, we mention that Hochman and Shmerkin [6] has a study on the
equidistribution and the normality from fractal measures. Secondly, we remark that, in
general, to see the asymptotic behavior of a specific trajectory T n x in a dynamics is of
quiet difficulty, and in this article we illustrate how it may work for random inputs. To
this end, we would even think (boldly) that, with probability 1, for a.e. t ∈ [0,1], the se-
quence T n(B̄(t )),n = 0,1,2, . . ., would be an equidistributed sequence, for B̄(t ) the Brow-
nian motion living in in the three-dimensional unit spherical surface or a planar fractal
(namely the Sierpiński gasket or carpet), and T being a sort of expanding transforma-
tions on such structures. In this aspect, we notice Section 6 of [5].

2. Proofs

Proof of Theorem 1.5. We consider the Fourier decay of a chosen measure supported
on the image set X (E) ⊂ Rd . For notational convenience, we work in the context of X ,
and transfer to X̄ is mod 1. Let hβ be the Hausdorff β-dimensional measure in RN , then
we consider the (random) measure µω induced by the hβ and the random mapping Xω;
here we add the random sign ω to emphasize the pathwise definition.

µω(A) := hβ(X −1
ω (A)), BorelA ⊂Rd ,

which is supported on Xω(E); it is a finite positive measure in Rd , since we assume that
0 < hβ(E) <∞ . The Fourier transform of µ is

µ̂(ξ) =
∫
Rd

e2πiξ·xµ(d x) =
∫
RN

e2πiξ·X (t ) dhβ(t ), ξ ∈Rd .
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Assuming thatβ≤ Hd , we see that those arguments established on p. 265-7 of Kahane [7]
(these arguments lead to the proof of Theorem 1 there, and they have been minor cor-
rected in (2.34) of [11]) assert that, when β ≤ Hd , there is the following moment esti-
mate:

E[|µ̂(ξ)|2p ] ≤C p (hβ(E))p pηp(
2|ξ|−1/H )βp , ∀ integer p ≥ 1,

and the constants C ,η depend only on N , H .
This moment estimate then asserts that, with probability 1,

limsup
|ξ|→∞

|µ̂(ξ)|√
(|ξ|−2β/H )(ln |ξ|)η

<∞.

Thus, we have the Fourier decay: with probability 1,

µ̂(ξ) =O(|ξ|−2β/Hφ(|ξ|))1/2, |ξ|→∞,

where φ(r ) is a slowly increasing function in r as r ↑ ∞; refer to Theorem 1 on p. 267
of [7] (distinguish the notations there and here).

Recently, Fraser and Sahlsten [4] extend the Davenport-Erdös-LeVeque Theorem [2]
to Td for any d ≥ 1, via the Weyl equidistribution criterion for T d ; see Theorem 1.6 in
Section 4 of their paper. We employ this to assert that, for almost sure ω, T n x (n =
0,1,2, . . .) is equidistributed for µω-a.e. x. We then have the assertion of Theorem 1.5, by
the definition of our µω := hβ(X −1

ω ).

Proof of Corollary 1.7. We apply Theorem 1.5 to N = 2,d = 3, H = 1/2, with β = Hd =
3/2, and the product C4,2 × [0,2π] is a Hausdorff (1+ ln2/ln4 = 3/2)-set, as it is stated in
Chapter 7 of [7] (we use C4,2 instead of his middle-thirds Cantor set there). �

We should mention that the arguments in the above fail to hold in case E is a Haus-
dorff β-set with β > Hd ; indeed, in this case the image of E under the random map-
ping X , with probability 1, has non-void interior, and the induced measure µ defined
above is absolutely continuous w.r.t. Lebd (see Section 4, Chapter 18 of [7]).

Proof of Theorem 1.1. It is well-known that, for x ∈ (0,1), the (simple) normality of x in
an integer base b > 1 is equivalent to equidistribution of the sequence x := T n x mod 1,
n = 0,1,2, . . ., where Tb x := b · x mod 1. Thus Theorem 1.1 is directly applicable to get
the normality, with β = Hd = 1/2. One referee indicates to the author that both Theo-
rems 1.1 and 1.4 can be viewed directly from Émile Borel’s 1909 Normal Number The-
orem via some intriguing arguments, and indeed the arguments would give us a more
general statement; we would adapt the indications in the following context, with grati-
tude. First of all, the mod 1 Gaussian measure and the Lebesgue measure on [0,1] are
mutually absolutely continuous. In the following context, we use the same notation
B(t ) for the Brownian path and its mod 1 version (that is, we scrape that bar from B̄(t )
in statements of Theorems 1.1 and 1.4). From this mutual absolute continuity, for the
linear Brownian path B(t ), thanks to Borel’s Theorem, for each t > 0, B(t ) is normal in
every base with probability 1; notice the order of the quantifiers. Consider the product of
the h1/2 measure (recall the notations given in Section 1) and the underlying probability
measure. By Fubini’s Theorem, we have

P {ω : B(t ,ω) is normal for h1/2-a.e. t ∈ [0,1]} = 1;

here and below, the term “normal” means the (simple) normality in every base. Thus,
the normality assertion of Theorem 1.1 is obtained, since C4,2 is a Hausdorff (1/2)-set,
indeed p. 132 of [7] tells us that h1/2(C4,2) = 1. The above argument also suggests a more
general statement: if C ⊂ [0,1] is analytic and is an hβ-set for some 0 < β ≤ 1 (β = 1 is
the Leb), then the random set {t ∈C : B(t ) is not normal} is, with probability 1, hβ-null.
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However, to prove assertions of Theorem 1.1 on the size of Brownian normal numbers
(recall this term in Remark 1.2), we need the crucial role of C4,2 as a self-similar set and
it critical value β= 1/2. For the Hausdorff dimension 1 assertion of Theorem 1.1, we use
the uniform dimension properties of the real Brownian paths, as shown in Theorem 1.15
of Balka and Peres [1]; we can apply this theorem because the time-set C4,2 ⊂ [0,1] is self-
similar by its construction (we notice that the self-similarity is crucial), and N4,2 is the
(random) subset C4,2 with Hausdorff dimension 1/2, since we have shown that, with
probability 1, h1/2(C4,2\N4,2) = 0; therefore, with probability 1,

dimH (B(N4,2)) = 2dimH (N4,2) = 2 · (1/2) = 1.

For the Lebesgue measure 0 assertion of Theorem 1.1, we need a precise result for image
sets of the linear Brownian motion: for any time-set A ⊂ [0,1]: with probability 1, the
image B(A) ⊂R has positive linear Lebesgue measure, if and only if A has positive (1/2)-
dimensional Riesz capacity, and the latter implies that h1/2(A) =∞ (the reader may trace
those statements and arguments in Chapter 17 (Sections 2 and 3 in particular) of [7] for
the proof). We mention that the pioneering article by S. J. Taylor [12] is crucial for the
connection of capacity theory to random fractals. Now, since h1/2(C4,2) = 1, we then
have Leb1(B(C4,2)) = 0; hence so is B(N4,2). �

Proof of Theorem 1.4. For the normality we may apply directly Theorem 1.5, with the
endomorphism (Tb ,Tb′ ) onT2, for any given two base b,b′; below, we consider again the
clever argument indicated by the referee. Let (B1(t ),B2(t )) be the mod 1 planar Brownian
motion so that it lives on T2 ' [0,1]2, consider the random set

Tj = {t ∈ [0,1] : B j (t ) is normal}, j = 1,2.

The main content of Theorem 1.4 is to show that

R := {(B1(t ),B2(t )) : t ∈T1 ∩T2}

has dimH (R) = 2, since the fact that the set has Leb2 zero is well-known from Paul Lévy’s
1937 Zero Area Theorem. By Fubini’s argument, as before, we have, with probability 1,
Leb(T1 ∩T2) = 1, since each Tj does (by Borel’s Theorem). Thanks to Robert Kaufman’s
1969 Uniform Dimension Theorem, we then have dimH (R) = 2. We mention that Lévy’s
Theorem can be seen in Theorems 2.24 and 4.18 of [10], and Kaufman’s Theorem can be
seen in the beginning of [1]. �
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