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Ribbon decomposition and twisted Hurwitz numbers

Yurii Burman & Raphaël Fesler

(Recommended by Boris Hasselblatt)

In memoriam S. M. Natanzon

Abstract. Ribbon decomposition is a way to obtain a surface with
boundary (compact, not necessarily oriented) from a collection of disks
by joining them with narrow ribbons attached to segments of the
boundary. Counting ribbon decompositions gives rise to a “twisted”
version of the classical Hurwitz numbers (studied earlier by G. Chapuy
and M. Dołęga [2] in a different context) and of the cut-and-join equa-
tion. We also provide an algebraic description of these numbers and
an explicit formula for them in terms of zonal polynomials.

1. Introduction

Twisted Hurwitz numbers. A classical surgery in dimension 2 studies connected sums
of spheres, that is, ways to obtain a compact surface from a collection of spheres by
gluing cylinders to them. In this paper we apply similar techniques to surfaces with
boundary: they are obtained from a collection of disks by gluing rectangles (“ribbons”)
to their boundary. Like with the classical connected sum, to glue a ribbon one is to
choose the orientation of the boundary at both points of gluing, so the ribbon glued
may look twisted or not.

Representation of a surface with boundary as a union of disks with the ribbons attach-
ed will be called its ribbon decomposition. See Figure 3 for examples: the upper picture
is a ribbon decomposition of an annulus, the lower one, of a Moebius band.

Diagonals of ribbons form a graph embedded into the surface (a.k.a. fat graph, rib-
bon graph, combinatorial map, etc.), with all its vertices on the boundary. The edges
adjacent to a given vertex are thus linearly ordered left to right (remember, an orienta-
tion of the boundary near every vertex is chosen); this ordering defines the embedding
of the graph up to homotopy.

Fix a positive integer m and a partition (λ1 ≥ ·· · ≥λs ) of the number

n
def= |λ| def= λ1 +·· ·+λs

into s parts. The main object of study in this paper, the twisted Hurwitz numbers h∼
m,λ,

have several definitions or models, as we call them. The first one, a topological model,
uses ribbon decompositions. Denote by Sm,λ the set of decompositions into m ribbons
of surfaces having boundary of s components containing λ1, . . . ,λs vertices (endpoints
of ribbon diagonals). Then the twisted Hurwitz number is defined as

(1.1) h∼
m,λ

def= 1

n!
#Sm,λ
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Another model for h∼
m,λ is algebraic. Consider a fixed-point-free involution

(1.2) τ= (1,n +1)(2,n +2) . . . (n,2n)

in the symmetric group S2n . Its centralizer is isomorphic to the reflection group of
type Bn . Let σ1, . . . ,σm ∈ S2n be transpositions. A simple analysis (see Section 3 below)
shows that the permutation

(1.3) u
def= σ1 . . .σmτσm . . .σ1τ ∈ S2n

is decomposed into independent cycles as u = c1c ′1 . . .cs c ′s where c ′i = τc−1
i τ for every

i = 1, . . . , s. Denote by Hm,λ the set of sequences (σ1, . . . ,σm) of m transpositions such
that the cycles c1, . . . ,cs of the permutation u of (1.3) have lengths λ1, . . . ,λs . We prove
(Theorem 17) that

(1.4) h∼
m,λ =

1

n!
#Hm,λ.

The third model for h∼
m,λ is algebro-geometric and is due to G. Chapuy and

M. Dołęga [2], who generalized the classical notion of a branched covering to the non-
orientable case. Let N denote a closed surface (compact 2-manifold without bound-

ary, not necessarily orientable), and p : N̂ → N , its orientation cover. Denote by H
def=

CP 1/(z ∼ z) =H∪ {∞} where H ⊂ C is the upper half-plane; its closure H is homeomor-
phic to a disk. Let π : CP 1 → H be the quotient map. A continuous map f : N → H is
called [2] a twisted branched covering if there exists a branched covering f̂ : N̂ → CP 1

(in the classical sense, a holomorphic map) such that π ◦ f̂ = f ◦ p, and all the critical
values of f̂ are real. These requirements imply in particular that the ramification profile
of any critical value c ∈RP 1 ⊂CP 1 of f̂ has every part repeated twice: (λ1,λ1, . . . ,λs ,λs ),
and deg f̂ = 2n is even. In this case we say that the ramification profile of the critical
value π(c) ∈ ∂H of the map f : N →H is λ= (λ1, . . . ,λs ).

Twisted branched coverings are split into equivalence classes via right-left equiva-
lence. Denote by Dm,λ the set of equivalence classes of twisted branched coverings hav-
ing m critical values with the ramification profiles 211n−2 and one critical value ∞ with
the ramification profile λ. Then

(1.5) h∼
m,λ =

2m

n!
#Dm,λ.

Note that we prove equations (1.4) and (1.5) differently. To prove (1.4) we establish
a direct correspondence Ξ between the sets Sm,λ and Hm,λ and prove (Theorem 17)
that it is one-to-one. To prove (1.5) we show (Theorems 23 and 25) that the generating
function of the twisted Hurwitz numbers satisfies a PDE of parabolic type called twisted
cut-and-join equation—just like standard Hurwitz numbers, whose generating function
satisfies the “classical” cut-and-join [6]. Cardinalities of the sets Dm,λ are shown in [2] to
satisfy the same equation (up to a change of variables) with the same initial data, so (1.5)
follows. Finding a direct correspondence between the sets Dm,λ and Sm,λ (or Hm,λ) is a
challenging topic of future research.

Bibliography remarks: real Hurwitz numbers. An involution T : N̂ → N̂ exchanging
the two preimages a,b ∈ p−1(c) of each point c ∈ N makes N̂ a real curve without real
points (a complex curve with an anti-holomorphic fixed-point-free involution). Now
(1.5) allows us to view h∼

m,λ as no-real-point real Hurwitz numbers.
Many versions of real Hurwitz numbers have been defined and studied in literature;

the full review of the topic goes far beyond the scope of this article. Let us only mention
the articles [11] by S. Natanzon and [7] by M. Kazarian, S. Lando and S. Natanzon; the
second one contains an appendix re-explaining the results of the first. [11] addresses the
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general case of real Hurwitz numbers: they are the numbers of meromorphic functions
with real critical values on a real curve stratified by position of the critical points (real
or not) and by the orders of the poles; for real critical points some more characteristics
are taken into account. In [7] real curves with maximal (separating) real set are consid-
ered; this is the particular case of [11] opposite to the one studied here. In both articles
a version of the cut-and-join equation for the generating function of the real Hurwitz
numbers is proved; note though that the generating functions here and in [11, 7] are
organized differently, so Theorem 25 below is not a specialization of the cut-and-join
operators there.

There are also some earlier results addressing particular case of real Hurwitz num-
bers: for genus 0 [13, 12] and for generic meromorphic functions (i.e., λ = 1n in our
notation) [12, 3]. Newer research also uses tropical technique, see, e.g., [10].

Structure of the paper. The paper contains three main sections in accordance with the
three models described. In the first, “topological” section we study ribbon decomposi-
tions of surfaces with boundary (rigged with marked points) and the graphs (with num-
bered vertices and edges) formed by the diagonals of ribbons. The graphs appear to be
1-skeleta of the surface, and the surface can be retracted to them (Theorem 9); also, the
graphs behave nicely under the orientation cover of the surface (Theorems 11 and 13).

Graph embeddings into oriented surfaces were studied earlier in a number of works
(see [8] for the general theory without boundary, [4] for the disk and [1] for arbitrary
surfaces and embeddings with a connected complement); they are in one-to-one corre-
spondence with sequences of transpositions in the symmetric group. The cyclic struc-
ture of the product of the transpositions describes faces of the graph (i.e., connected
components of its complement). The quantity of graphs with given faces is called a
(classical) Hurwitz number and has been studied intensively during the last decades—
the research involving dozens of authors and hundreds of works; its thorough review is
far outside the scope of this paper. The algebraic model for twisted Hurwitz numbers,
studied in Section 3, is a generalization of this correspondence. The section also con-
tains an explicit formula for the cut-and-join equation (Theorem 25) and for the gener-
ating function of the twisted Hurwitz numbers (Theorem 28).

In the last section we study the notion of the twisted branched covering defined in [2]
and show that they form an algebro-geometric model for twisted Hurwitz numbers.

2. Surgery: a Topological Model for Twisted Hurwitz Numbers

2.1. General definitions.

Definition 1. A decorated-boundary surface (DBS) is a triple (M , (a1, . . . , an), (o1, . . . ,on)),
where M is a compact surface (2-manifold) with boundary, a1, . . . , an ∈ ∂M are marked
points, and every oi is a local orientation of ∂M (hence, of M itself, too) in the vicinity of
the point ai , such that

• every connected component of M has nonempty boundary, and
• every connected component of ∂M contains at least one point ai .

The DBS M and M ′ with the same number n of marked points are called equivalent
if there exists a homeomorphism h : M → M ′ such that h(ai ) = a′

i and h∗(oi ) = o′
i for all

i = 1, . . . ,n. The set of equivalence classes of DBS with n marked points will be denoted
DBS n .
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Figure 1. Gluing ribbons

Pick marked points ai , a j ∈ ∂M , and let εi ,ε j ∈ {+,−}. Consider points a′
i , a′

j ∈ ∂M

lying near ai , a j and such that the boundary segment ai a′
i is directed along the orienta-

tion oi if εi =+ and opposite to it if εi =−; the same for j . Now take a long narrow rec-
tangle (“a ribbon” henceforth) and glue its short sides to ∂M as shown in Figure 1. The
result of gluing is homeomorphic to a surface M ′ with the boundary ∂M ′ ∋ a1, . . . , an .
The boundary of M ′ near ai and a j contains a segment of ∂M (the “old” part) and
a segment of a long side of the ribbon glued (the “new” part); define local orienta-
tions o′

i , o′
j of ∂M ′ near ai , a j so that the orientations of the “old” parts would be pre-

served (see bold curved arrows in Figure 1); for k ̸= i , j take o′
k = ok by definition. Now

(M ′, (a1, . . . , an), (o′
1, . . . ,o′

n)) is a DBS, so we defined a mapping G[i , j ]εi ,ε j : DBS n →
DBS n called ribbon gluing. The ribbon gluing G[i , j ]εi ,ε j will be called twisted if εi ̸=
ε j , and non-twisted otherwise; compare the left and the right picture in Figure 1.

The inverse operation is called ribbon removal. To define it, take ε ∈ {+,−} and fix a
smooth simple (i.e., not self-intersecting) curve γ on M joining ai and a j and transversal
to ∂M in its endpoints. Take now a point a′

j ∈ ∂M near ai and a′
i ∈ ∂M near a j (note the

subscripts!) such that the segment ai a′
j ⊂ ∂M is directed according to the orientation oi

if ε = + and opposite to it if ε = −, and consider a “rectangle” Π like in Figure 1. Then

M ′ def= M \int(Π) is homeomorphic to a surface with the boundary ∂M ′ ∋ a1, . . . , an . A local
orientation o′

i of ∂M ′ near ai is defined by the same rule as for the ribbon gluing: oi and

o′
i coincide on the intersection ∂M ′∩∂M near ai ; the same for o′

j , and also o′
k

def= ok for

all k ̸= i , j . Now (M ′, (a1, . . . , an), (o′
1, . . . ,o′

n)) is a DBS obtained from the original DBS by
the operation R[γ]ε of ribbon removal.

Remark 2. Local orientations oi and o j of ∂M define orientations of the normal bundle
to γ; we call γ non-twisting if the orientations are the same, and twisting otherwise.
Obviously, the segment a j a′

j is directed along the orientation o j if ε = + and γ is non-

twisting or ε=− and γ is twisting; otherwise a j a′
j is directed opposite to o j .

The operation R[γ]ε is a sort of inverse to ribbon gluing due to the following obvious
statement:
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Proposition 3.

(1) Let i , j ∈ {1, . . . ,n}, εi ,ε j ∈ {+,−} and γ be a diagonal of the ribbon joining ai and
a j . Then R[γ]εi G[i , j ]εi ,ε j = idDBS n .

(2) Let γ be a simple smooth curve on M joining ai and a j and transversal to the
boundary, and εi ∈ {+,−}. Let ε j ∈ {+,−} be defined as ε j = εi if the curve γ is
non-twisting and ε j =−εi otherwise. Then G[i , j ]εi ,ε j R[γ]εi = idDBS n .

Remark 4. Gluing a ribbon decreases the Euler characteristics of the surface by 1 and
removal, increases it by 1.

2.2. Ribbon decompositions. By Definition 1 every connected component of a DBS
contains a marked point. M ∈DBS n is called stable if every its connected component
either contains at least two marked points or is a disk (with one marked point only).

Denote by En ∈DBS n a union of n disks with one marked point on the boundary of
each.

Proposition 5. M ∈ DBS n is stable if and only if it can be obtained by gluing several
ribbons to En . If M is stable then its Euler characteristics χ(M) does not exceed n, and the
number of ribbons is equal to n −χ(M).

Proof. If a surface with a ribbon glued has a component with only one marked point
then the gluing left this component intact. So, gluing a ribbon to a stable DBS keeps its
stability, which proves the ‘only if’ part of the proposition (En is stable by definition).

To prove the ‘if’ part we will need a lemma:

Lemma 6. Let n ≥ 2. Then for any M ∈ DBS n which is connected and stable but is not
a disk there exists a simple smooth non-separating curve γ joining two marked points.

“Nonseparating” here means that the complement of γ is connected, too.

Proof of the lemma. M contains at least two marked points. If ∂M is not connected then
take two marked points on different components of ∂M and join them with a simple
smooth curve γ; such curve is always non-separating.

Let now ∂M be connected. Then M is a connected sum of a disk with several handles
and/or Moebius bands. Let S1 ⊂ M be a circle separating the disk from a handle or from
a Moebius band, and let p, q ∈ S1 be two points. There exists a non-separating curve δ
inside the handle or the Moebius band joining p and q . Now pick a curve γ1 joining p

with one marked point and γ2 joining q with another one. Then the union γ
def= γ1∪δ∪γ2

is non-separating as required. □

Corollary 7. If M ∈ DBS n is stable and M ̸= En then there exists a curve γ on M such

that M ′ def= R[γ]ε(M) is stable (regardless of ε).

Proof of the corollary. A stable DBS different from En contains a component with two or
more marked points. If this component is a disk then take for γ any simple curve joining
these points. If it is not a disk then take for γ the non-separating curve of Lemma 6. □

The proposition is now proved using induction on the Euler characteristic of M . Ev-
ery component of M is a manifold with nonempty bounbdary, so the 2nd Betti number
of M is zero and χ(M) = h0(M)−h1(M) ≤ h0(M) ≤ n; the equality is possible only if
M = En . Let now χ(M) = n −m, m > 0. Use Corollary 7 to obtain a curve γ in M such
that M ′ = R[γ]+(M) is stable; by Remark 4 one has χ(M ′) = n −m +1, so by the induc-
tion hypothesis M ′ can be obtained from En by gluing m −1 ribbons. By assertion 2 of
Proposition 3 there exist i , j and ε such that M =G[i , j ]+,ε(M ′)—so, M can be obtained
by gluing m ribbons. □
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Let now, again, M ∈DBS n be obtained by gluing of m ribbons to En :

(2.1) M =G[im , jm]εm ,δ′m . . .G[i1, j1]ε1,δ1 En

(that’s what we will be calling a ribbon decomposition of M). For every ribbon, draw a
diagonal joining its vertices aik and a jk , and assign the number k to it. The union of
the diagonals is a graph Γ⊂ M with m numbered edges r1, . . . ,rm and the marked points
a1, . . . , an as vertices; we call it a diagonal graph of the ribbon decomposition.

Let ai be a marked point of M , Γ⊂ M be a diagonal graph of a ribbon decomposition,
and let ℓ1, . . . ,ℓk be the numbers of the edges of Γ having ai as an endpoint, listed left to

right according to the orientation oi ; denote P (ai )
def= (ℓ1, . . . ,ℓk ).

Theorem 8. The diagonal graph Γ has the following properties:

(1) (embedding) Γ is embedded: its edges do not intersect one another or the bound-
ary of M except at endpoints.

(2) (anti-unimodality) For every vertex ai the sequence P (ai ) = (ℓ1, . . . ,ℓk ) is anti-
unimodal: there exists p ≤ k such that ℓ1 > ·· · > ℓp < ·· · < ℓk .

(3) (twisting rule) In the notation of the above call the edges ℓ1, . . . ,ℓp negative at the
endpoint ai , and edges ℓp , . . . ,ℓk , positive (note that ℓp is both). Then any twist-
ing edge of Γ is positive at one of its endpoints and negative at the other one, and
any non-twisting edge is either positive at both endpoints or negative at them.

(4) (retraction) The graph Γ is a homotopy retract of the surface M.

Proof. Induction by the number m of ribbons; the base m = 0 is obvious. For any m > 0,
let M =G[im , jm]εmδm M ′, and Γ′ ⊂ M ′ ⊂ M be the union of all the edges of Γ except m.

Assertion 1: the internal points of the edge m lie in the interior of the ribbon rm =
M \ M ′ and thus belong neither to Γ′ nor to ∂M .

Assertion 2: after gluing the ribbon rm to M ′, the edge m is either the leftmost or the
rightmost of all the edges ending at aim . Thus, if P (aim ) = (ℓ1, . . . ,ℓk ) then either ℓ1 = m
and ℓ2, . . . ,ℓk is anti-unimodal by the induction hypothesis, or ℓk = m and ℓ1, . . . ,ℓk−1 is
anti-unimodal. In both cases ℓ1, . . . ,ℓk is anti-uninmodal.

Assertion 3 is true for the edges of Γ′ ⊂ M ′ by the induction hypothesis. Apparently,
this is preserved after the ribbon rm is glued. The edge m is the diagonal of rm ; the long
sides of rm lie in ∂M , and therefore the edge m is adjacent to ∂M at both its endpoints,
from the right for one of them and from the left for the other. This proves assertion 3 for
the edge m, too.

To facilitate induction for assertion 4, we make it a bit stronger: fix, for every i , a small
segment ei ⊂ ∂M , ai ∈ ei , and prove that there exists a homotopy retraction f : M → Γ

such that f (x) = ai for all x ∈ ei .
By the induction hypothesis, such f exists for M ′ and Γ′. W.l.o.g. the ribbon rm con-

taining ai and a j is glued to M ′ so that its short sides lie within the segments ei and
e j . Thus, the induction step is reduced to the following obvious statement: there exists
a homotopy retraction of a rectangle Π onto its diagonal [ab] sending short sides and
small neighborhoods of the points a,b ∈ ∂Π to the points a and b. □

Let now M ∈DBS n and let Γ⊂ M be an embedded loopless graph with the vertices
at the marked points of M and the edges numbered 1, . . . ,m. We call Γ properly embed-
ded if it satisfies all the assertions of Theorem 8: embedding, anti-unimodality, twisting
rule and retraction. Connected components of the complement M \∂M \Γwill be called
faces; connected components of ∂M \{a1, . . . , an}, external edges, and connected compo-
nents of Γ\ {a1, . . . , an}, internal edges.
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Figure 2. The open cover of M

Theorem 9. Vertices, edges and faces of a properly embedded graph Γ form a cell decom-
position of M (as 0-cells, 1-cells and 2-cells, respectively) such that every face is adjacent
to exactly one external edge. The total number of faces is n.

Proof. Let Γ have k faces f1, . . . , fk . Cover M with the open subsets shown in Figure 2.
Sets ei (neighborhoods of internal edges) are homeomorphic to disks, bi (neighbor-

hoods of external edges) and vi (neighborhoods of vertices), to half-disks; topology of
faces fi is yet to be described. Connected components of all the nonempty intersections
of the sets (including faces) are homeomorphic to disks or half-disks, too.

The nonempty intersections are:

• 2m connected components of fi ∩e j for all i , j ;
• n components of fi ∩b j for all i , j ;
• Ifδ j is the valency of the j th vertex of the graph, then there areδ j+1 components

of fi ∩v j for all i . The total number of components in fi ∩v j is thus
∑

j (δ j +1) =
2m +n;

• 2m components of ei ∩ v j , for all i , j ;
• 2n components of bi ∩ v j , for all i , j ;
• 4m components of fi ∩e j ∩ vk , for all i , j ,k;
• 2n components of fi ∩b j ∩ vk .

Thus the Euler characteristics of M is

χ(M) =
k∑

i=1
χ( fi )+m +n +n −2m −n − (2m +n)−2m −2n +4m +2n

=
k∑

i=1
χ( fi )−m.

On the other hand, Γ is a retract of M , so χ(M) = χ(Γ) = n −m, hence
∑k

i=1χ( fi ) = n.
Faces are connected open 2-manifolds, so χ( fi ) ≤ 1 for every i , and therefore n ≤ k.

Closure of a face is a compact manifold with boundary, so it cannot retract to its
boundary. It means that the boundary of any face is not a subset of the graph and must
contain an external edge. The total number of external edges is n, and an external edge
belongs to the boundary of one face only. This implies n ≥ k and therefore n = k and
χ( fi ) = 1 for every i = 1, . . . ,k.

So each fi is a disk. Its closure contains one external edge and ki internal ones, as
well as vertices, so it is an image of the map Qi from some (ki +1)-gon to M . Every Qi

sends sides of the polygon to the edges and vertices to vertices, so collectively the Qi ,
i = 1, . . . ,k, are characteristic maps of a cell decomposition. □
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Theorem 9 allows us to prove the inverse of Theorem 8:

Theorem 10. Let M ∈DBS n be stable and Γ⊂ M be a properly embedded graph. Then Γ
is the diagonal graph of a ribbon decomposition of M.

Proof. Induction by the number m of edges of Γ. The base: m = 0 means that Γ consists
of n isolated vertices. Since M is a retract of Γ, one has M = En .

Let m > 0. The edge em of Γ joins the vertices ai and a j (necessarily different) and
separates faces fp and fq (which may be the same). By the anti-unimodality, em is ad-
jacent to ∂M at both ai and a j . Using Theorem 9, consider a characteristic map Qp of
the cell fp . It maps the side v0v1 of the polygon to the external edge of fp and the ad-

jacent side v1v2, to em . Let v ′ ∈ v0v1 be a point near the vertex v1, a′
i

def= Qp (v ′) ∈ ∂M ;

consider the image Tp
def= Qp (v ′v1v2) ⊂ M of the triangle v ′v1v2. Then the union of Tp

and a similar triangle Tq ⊂ fq is a ribbon H having em as its diagonal.
Let Γ′ be the graph Γ with the edge em removed. Take ε=+ if ∂M near ai is oriented

towards a′
i , and ε=− otherwise. Then Γ′ is embedded into M ′ def= R[em]ε(M); an imme-

diate check shows that the embedding is proper, so Γ′ is the diagonal graph of a ribbon
decomposition of M ′ by the induction hypothesis. By Proposition 3 M can be obtained
by gluing the ribbon H to M ′, which finishes the induction. □

2.3. Oriented case and the orientation cover. A DBS M is called oriented if all the local
orientations oi are consistent with a global orientation of the surface M . For an oriented
M the numbers of marked points read off the components of ∂M according to the ori-
entation form a cyclic decomposition of some permutation σ ∈ Sn called the boundary
permutation of M (here and below we denote by Sn the permutation group). In other
words, for any k = 1, . . . ,n the marked point adjacent to ak in the positive direction of ∂M
is aσ(k).

It is easy to see that if M is oriented and the gluing G[i , j ]εi ,ε j is non-twisted (εi = ε j )
then G[i , j ]εi ,ε j (M) ∈DBS n is oriented, too. A ribbon decomposition

(2.2) M =G[im , jm]++ . . .G[i1, j1]++En

is called oriented; existence of such means, by obvious induction, that the surface M is
oriented.

Theorem 11. The diagonal graph Γ of the oriented ribbon decomposition (2.2) has the
following properties (in addition to those granted by Theorem 8):

(1) (vertex monotonicity) For every vertex ai of Γ the sequence P (ai ) = (ℓ1, . . . ,ℓk ) is
increasing: ℓ1 < ·· · < ℓk .

(2) (face monotonicity) For every face fi of Γ the numbers ℓ1, . . . ,ℓp of the internal
edges adjacent to it are increasing if the count starts at the (only) external edge of
fi and goes counterclockwise.

(3) (face separation) Every internal edge of Γ separates two different faces.
(4) (boundary permutation) Let aik , a jk be endpoints of the edge ek of Γ, k = 1, . . . ,m.

Then the boundary permutation of M is equal to (im jm) . . . (i1 j1) ∈ Sn .

Proof. Vertex monotonicity is a particular case of anti-unimodality of Theorem 8.
If ℓ j and ℓ j+1 are two internal edges on the boundary of fi sharing an endpoint a

then the orientation of the boundary near a is consistent with the counterclockwise
orientation of fi . Then the vertex monotonicity implies ℓ j < ℓ j+1, which proves face
monotonicity. The face monotonicity implies, in its turn, the face separation: as one
moves around a face, the numbers of the internal edges seen are increasing and there-
fore cannot repeat.
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Let ak , as ∈ ∂M be neighboring vertices, that is, the endpoints of an external edge. By
Theorem 9 and the face monotonicity, this is the sole external edge of a face f , its re-
maining sides being internal edges numbered ℓ1 < ·· · < ℓp , as one moves from ak to as .
Consider an action of Sn on the vertices of M ∈DBS n by permuting their numbers; in
particular, the transposition (it jt ) exchanges the numbers of the vertices joined by the
t th edge of the diagonal graph, leaving the other vertices intact. So, the transposition
(iℓ1 jℓ1 ) moves ak to its neighbor at the face f ; then the transposition (iℓ2 , jℓ2 ) (where
ℓ2 > ℓ1, so it is applied after the first one) moves it to the next vertex of the same face,
etc.; eventually, σ= (im jm) . . . (i1 j1) moves ak to as = aσ(k). □

Every manifold M (possibly with boundary) has the orientation cover, uniquely de-
fined up to an obvious isomorphism: it is an oriented manifold M̂ of the same dimen-
sion together with a fixed-point-free smooth involution T : M̂ → M̂ reversing the orien-
tation and such that M is diffeomorphic to its orbit space.

The quotient map M̂ → M̂/T = M is a 2-sheeted covering, trivial iffM is oriented. For
2-manifolds with boundary there is

Lemma 12. The orientation covering is trivial over the boundary of a 2-manifold.

Proof. The boundary ∂M and its cover ∂M̂ are unions of circles. If the covering is non-
trivial over the boundary then there is a component C ⊂ ∂M covered by a T -invariant
circle C ′ ⊂ ∂M̂ .

A continuous map A : S1 → S1 has at least |deg A−1| fixed points, so the fixed-point-
free map T : C ′ →C ′ has degree 1 and therefore, being a covering, preserves orientation.
Since C ′ ⊂ ∂M̂ , it means that T : M̂ → M̂ also preserves local orientation at every point
a ∈C ′. But T is orientation-reversing everywhere—a contradiction. □

Let a fixed-point-free involution τ ∈ S2n be defined by (1.2). The notion of an orien-
tation cover can be extended to decorated-boundary surfaces as follows: M̂ ∈ DBS 2n

with the marked points b1, . . . ,b2n is called the orientation cover of M ∈ DBS n with
the marked points a1, . . . , an if M̂ is oriented and there exists a fixed-point-free smooth
involution T : M̂ → M̂ reversing the orientation and such that T (bk ) = bτ(k) for all
k = 1, . . . ,2n, and also there exists a diffeomorphism p : M̂/T → M between the orbit
space and M such that p(

{
bk ,bτ(k)

}
) = ak for all k = 1, . . . ,n.

For M ∈ DBS n the surface M̂ and involution T : M̂ → M̂ are uniquely defined; the

marked points are p−1(a1)
def= {bi ,bi+n} ⊂ ∂M̂ . The numbering of the two points bi and

bi+n depends on the local orientation oi of ∂M at ai and is fixed by the following rule: the
mapping p : ∂M̂ → ∂M preserves the orientation at bi and reverses it at bi+n , i = 1, . . . ,n.
Thus, for every M ∈DBS n an orientation cover M̂ ∈DBS 2n is unique.

Let 1 ≤ i ≤ n and ε ∈ {+,−}. Denote i ε =
{

i , ε=+,

τ(i ), ε=−.

Theorem 13. Let M be a DBS of equation (2.1). Then its orientation cover is

(2.3) M̂ =G
[
i εm

m jδm
m

]++ . . .G
[
i ε1

1 jδ1
1

]++G
[
i−ε1

1 j−δ1
1

]++ . . .G
[
i−εm

m j−δm
m

]++En .

The involution T : M̂ → M̂ maps the ribbon rℓ to the ribbon r2m+1−ℓ for all ℓ= 1, . . . ,2m.

The proof is an obvious induction. See Figure 3 for an example. The Roman numerals
there mean faces, Arabic numbers, vertices, and the circled numbers mark diagonals of
the ribbons.

Proof. Let ai be a marked point of M with P (ai )=(ℓ1, . . . ,ℓk ) where ℓ1>·· ·>ℓp <·· ·<ℓk ,
and let bi ,bτ(i ) ∈ M̂ be its preimages. Use the induction on m to prove the theorem
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Figure 3. Covering of the Moebius band M =G[1,2]++G[2,3]++G[1,3]+−E3

by an annulus

showing simultaneously that P (bi ) = (m+1−ℓ1, . . . ,m+1−ℓp ,m+ℓp+1, . . . ,m+ℓk ) and
P (bτ(i )) = (m +1−ℓk , . . . ,m +1−ℓp+1,ℓp +m, . . . ,ℓ1 +m).

The base m = 0 is obvious. For m > 0 let M = G[i , j ]εδM ′, where i , j , ε, and δ mean
im , jm , εm , and δm , respectively. If P M ′ (ai ) = (ℓ1, . . . ,ℓk ) where ℓ1 > ·· · > ℓp < ·· · < ℓk

then P M (ai ) = (ℓ1, . . . ,ℓk ,m) if ε=+ and P M (ai ) = (m,ℓ1, . . . ,ℓk ) if ε=−; the same for
a j (depending on δ instead of ε).

Denote by M̂ ′ the orientation cover of M ′ and define M̂ by (2.3). By the induction
hypothesis M̂ ′ is a subset of M̂ (a union of all the ribbons except r1 and r2m). Extend
T : M̂ ′ → M̂ ′ to the involution M̂ → M̂ sending r1 to r2m and vice versa; also extend
the homeomorphism ρ : M̂ ′/T → M ′ to a map M̂/T → M sending r1 and r2m to the
mth ribbon of M . To complete the proof we are to check that the extended T and ρ are
continuous on the boundary of the ribbons r1 and r2m .

By the induction hypothesis, P M̂ ′ (bi ) = (m−ℓ1, . . . ,m−ℓp ,ℓp+1+m−1, . . . ,ℓk +m−1)
and P M̂ ′ (bτ(i )) = (m −ℓk , . . . ,m −ℓp+1,ℓp +m −1, . . . ,ℓ1 +m −1). So, if ε=+ then

P M̂ (bi ) = (m +1−ℓ1, . . . ,m +1−ℓp ,ℓp+1 +m, . . . ,ℓk +m,2m)

P M̂ ′ (bτ(i )) = (1,m +1−ℓk , . . . ,m +1−ℓp+1,ℓp +m, . . . ,ℓ1 +m),

and if ε=− then

P M̂ (bi ) = (1,m +1−ℓ1, . . . ,m +1−ℓp ,ℓp+1 +m, . . . ,ℓk +m)

P M̂ ′ (bτ(i )) = (m +1−ℓk , . . . ,m +1−ℓp+1,ℓp +m, . . . ,ℓ1 +m,2m);

the same for b j and bτ( j ), with δ instead of ε.
Thus, if ε=+ then the ribbon r2m is adjacent to rℓk+m and the ribbon r1, to rm+1−ℓk

;
the mth ribbon of M = G[i , j ]εδM ′ is adjacent to the ribbon numbered ℓk . By the in-
duction hypothesis, T exchanges rℓk+m and rm+1−ℓk

, so the extensions of T and ρ are
continuous on the “long” sides of r2m and r1 containing bi and bτ(i ), respectively. The
proof in the case ε = − is the same. A similar analysis of P (b j ) and P (bτ( j )) for δ = +
and δ=− shows that T and ρ are continuous on the other sides of r2m and r1, too. □
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3. Algebraic Model and Twisted Cut-and-join Equation

3.1. Algebraic preliminaries and twisted Hurwitz numbers. Recall [5] that the reflec-
tion group Bn is the semidirect product Sn ⋉ (Z/2Z)n where Sn acts on (Z/2Z)n by per-

muting the factors; it is generated by reflections si j
def= (i j )⋉ 1 and li

def= id⋉1i where

1
def= (1, . . . ,1) and 1i

def= (1, . . . ,−1, . . . ,1) with −1 at the i th place. The group Bn can be
embedded into S2n as a centralizer C (τ) where τ, as above, is defined by (1.2); the iso-
morphism A : C (τ) → Bn is given by A(σ) =λσ⋉ (ε(1)

σ , . . . ,ε(n)
σ ) where

λσ(i ) =
{
σ(i ), σ(i ) ≤ n,

σ(i )−n, σ(i ) ≥ n +1
and ε(i )

σ =
{

1, σ(i ) ≤ n,

−1, σ(i ) ≥ n +1.

Let C∼(τ)
def= {

σ ∈ S2n
∣∣τσ=σ−1τ

}
(a “twisted centralizer” of τ).

Lemma 14. Let σ = c1 . . .cm ∈ C∼(τ) where c1, . . . ,cm are independent cycles. Then for
every i either

• there exists j ̸= i such that ci = (u1 . . .uk ) and c j = (τ(uk ) . . .τ(u1)); or
• ci has even length 2k and looks like ci = (u1 . . .ukτ(uk ) . . .τ(u1)).

In the first case we say that the cycles ci and c j are τ-symmetric, and in the second
case the cycle ci is τ-self-symmetric.

Proof. Let ci = (u(i )
1 . . .u(i )

ki
) for all i = 1, . . . ,m. Then τστ−1 = c ′1 . . .c ′m where c ′i =

(τ(u(i )
1 ) . . .τ(u(i )

ki
)). On the other side, σ−1 = c ′′1 . . .c ′′m where c ′′i = (u(i )

ki
. . .u(i )

1 ). Once a cycle

decomposition is unique, every c ′′i must be equal to some c ′j . If j ̸= i then ci and c j are

τ-symmetric, and if j = i then ci is τ-self-symmetric. □

Theorem 15. There exists a one-to-one correspondence between the following three sets:

(1) The quotient (the set of left cosets) S2n/Bn where we assume Bn =C (τ);
(2) The set B∼

n of permutations σ ∈ C∼(τ) such that their cycle decomposition con-
tains no τ-self-symmetric cycles.

(3) The set of fixed-point-free involutions λ ∈ S2n .

The size of each set is (2n −1)!! = 1×3×·· ·× (2n −1).

Proof. To prove the theorem we will construct injective maps 1 → 2 → 3 → 1.

1 → 2: letσ ∈ S2n be an element of the coset λ ∈ S2n/Bn ; take Q(λ)
def= [σ,τ]

def= στσ−1τ.
Since τ is an involution, one has τQ(λ)τ = τστσ−1 = Q(λ)−1, so Q(λ) ∈ C∼(τ). If σ′ ∈ λ
is another element of the coset then σ′ = σρ where ρτ = τρ and therefore [σ′,τ] =
σρτρ−1σ−1τ = στρρ−1σ−1τ = Q(λ), so the map Q : S2n/Bn → C∼(τ) is well-defined.
If Q(λ) = Q(λ′) where λ,λ′ ∈ S2n/Bn are represented by σ and σ′, respectively, then
στσ−1τ = σ′τ(σ′)−1τ, which is equivalent to (σ′)−1στ = τ(σ′)−1σ. So (σ′)−1σ ∈ Bn , and
λ=λ′, so Q is injective.

Prove that actually Q(λ) ∈ B∼
n ⊂C∼(τ). Suppose it is not the case, that is, Q(λ) contains

a τ-self-symmetric cycle c = (u1 . . .ukτ(uk ) . . .τ(u1)). It implies that τQ(λ) has a fixed
point u = uk . On the other hand, τQ(λ) = (τσ)τ(τσ)−1 is conjugate to τ and is therefore
a product of n independent transpositions having no fixed points—a contradiction.

2 → 3: the condition τστ−1 = σ−1 is equivalent to (στ)2 = id. If σ = c1c2 . . .ck then
στ sends every element of the cycle ci to an element of its τ-symmetric cycle c j . So if
j ̸= i for all i then the involution στ has no fixed points. The map σ 7→ στ is obviously
injective.

3 → 1: if ψ is a fixed-point-free involution then its cycle decomposition is a product
of n independent transpositions, and therefore ψ belongs to the same conjugacy class
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in S2n as τ: ψ = στσ−1 for some σ ∈ S2n . Denote by R(ψ) ∈ S2n/Bn the left coset con-
taining σ. The equality σ1τσ

−1
1 = σ2τσ

−1
2 is equivalent to (σ1σ

−1
2 )τ = τ(σ1σ

−1
2 ), that is,

σ1σ
−1
2 ∈ Bn . So the left cosets containing σ1 and σ2 are the same and R(ψ) ∈ S2n/Bn is

well-defined. If R(ψ1) = R(ψ2) where ψi = σiτσ
−1
i , i = 1,2, then σ1σ

−1
2 ∈ Bn and there-

fore ψ1 =ψ2; thus, R is an injective map. □

Fix a partition λ= (λ1, . . . ,λs ), |λ| = n, and denote by B∼
λ
⊂ B∼

n the set of permutations
whose decomposition into independent cycles consists of s pairs of τ-symmetric cycles
of lengths λ1, . . . ,λs . Apparently, B∼

n = ⊔
|λ|=n

B∼
λ .

Proposition 16. B∼
λ

is a Bn-conjugacy class in S2n .

Proof. Let σ = c1c ′1 . . .cs c ′s ∈ B∼
n be the cycle decomposition where ci and c ′i are τ-sym-

metric for all i : c ′i = τc−1
i τ. Let x ∈ Bn , that is, xτ= τx. Then xσx−1 = xc1x−1 ·xτc−1

1 τx−1 ·
· · ··xcs x−1·xτc−1

s τx−1. The permutations c̃i
def= xci x−1 and c̃ ′i = xc ′i x−1 are cycles of length

λi , and they are τ-symmetric: τc̃iτ = τxci x−1τ = xτciτx−1 = x(c ′i )−1x−1 = (c̃ ′i )−1. Thus,
xσx−1 ∈ B∼

λ
.

On the other side, let σ̃= c̃1c̃ ′1 . . . c̃s c̃ ′s ∈B∼
λ

. Let c̃i =(v (i )
1 . . . v (i )

λi
), so c̃ ′i =(τ(v (i )

λi
) . . .τ(v (i )

1 )).

Define an element x ∈ S2n such that x(u(i )
s ) = v (i )

s and x(τ(u(i )
s )) = τ(v (i )

s ). Then xσx−1 =
σ̃ and xτ= τx (that is, x ∈ Bn). □

Now denote by Sm,λ the set of decompositions into m ribbons of the surfaces M ∈
DBS n such that ∂M has s components containing λ1, . . . ,λs marked points.

Let G ∈Sm,λ be a ribbon decomposition of M ∈DBS n . Denote by M̂ ∈DBS 2n the

orientation cover of M with a ribbon decomposition given by (2.3). Now define Ξ(G )
def=

(σ1, . . . ,σm) where each σk
def= (i εk

k , jδk
k ) ∈ S2n is a transposition; here we are using the

notation of Theorem 13. Denote

Hm,λ
def= {

(σ1, . . . ,σm)
∣∣∀s = 1, . . . ,mσs = (is js ), js ̸= τ(is ),

σ1σ2 . . .σm(τσmτ) . . . (τσ1τ) ∈ B∼
λ

}
.

Theorem 17. For any λ and m the map Ξ is a one-to-one correspondence between Sm,λ

and Hm,λ.

Proof. Let G ∈ Sm,λ be a ribbon decomposition of M ∈ DBS n . By Theorem 13 the
diagonal of the kth ribbon in the ribbon decomposition (2.3) of M̂ joins the marked

points numbered i εk
k and jδk

k if 1 ≤ k ≤ m and the points numbered i−εk−m
k−m and j−δk−m

k−m if

m +1 ≤ k ≤ 2m. Then by Property 4 of Theorem 11 the boundary permutation of M̂ is

σ=σ1σ2 . . .σm(τσmτ) . . . (τσ1τ);

it has the cyclic type (λ1,λ1, . . . ,λs ,λs ) by the definition of Sm,λ. On the other hand,
τστ = (τσ1τ) . . . (τσmτ)σm . . .σ1 = σ−1 because σk and τσkτ are involutions for all k.
Thus, σ ∈ B∼

n , hence σ ∈ B∼
λ

, and so Ξ(G ) ∈Hm,λ.
The map Ξ is obviously one-to-one. □

Corollary 18. The boundary permutation of the orientation cover M̂ ∈ DBS 2n of any
M ∈DBS n belongs to B∼

n .

Corollary 19. If the twisted Hurwitz number h∼
m,λ is defined by equation (1.1) then equal-

ity (1.4) takes place.

Example 20. For m = 1, any n = |λ| and any transposition σ ̸= (i , i +n) the permutation
µ = στστ belongs to Bn,211n−2 . Now #H1,211n−2 is the total number of all transpositions
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σ ∈ S2n except (i , i +n), which is 1
2 (2n)(2n −1)−n = 2n(n −1). So, h1,211n−2 = 2n(n−1)

n! =
2

(n−2)! and h1,λ = 0 for all other λ.
Let m = 2, n = |λ| = 2; here τ= (13)(24) ∈ S4. The set B∼

2 ⊂ B2 =C (τ) ⊂ S4 is a union of
two conjugacy classes, B∼

[2] = {(12)(34), (14)(23)} and B∼
[1,1] = {e}.

Consider the permutation µ
def= σ1σ2τσ2σ1τ where σ1,σ2 ∈ {(12), (14), (23), (34)}; to-

tally, there are 16 of them. It is easy to see that µ = e ∈ B∼
[1,1] if and only if σ2 = σ1

or σ2 = τσ1τ; the remaining 8 pairs of transpositions (σ1,σ2) give µ ∈ B∼
[2]. This gives

h∼
2,[1,1] = h∼

2,[2] = 8
2! = 4.

For n = 3, m = 2 the calculations (in S6) are similar but more cumbersome, giving
eventually h∼

2,[1,1,1] = h∼
2,[2,1] = 4 and h∼

2,[3] = 16.

3.2. Twisted cut-and-join operator. Now denote

(3.1) C ∼
λ

def= ∑
σ∈B∼

λ

σ ∈C[B∼
n ].

(a conjugacy class sum). Also, call the set

Z (B∼
n )

def= {
y ∈C[B∼

n ]
∣∣x y x−1 = y ∀x ∈ Bn

}
a twisted center of Bn . It is clear that C ∼

λ
belong to Z (B∼

n ) and form a basis in it.
Let C[p] be a space of polynomials of the countable set of variables p = (p1, p2, . . . ).

Assume deg pk = k for all k and denote byC[p]n the space of homogeneous polynomials
of degree n. A linear mapΨ : Z (B∼

n ) →C[p]n defined by

(3.2) Ψ(C ∼
λ ) = pλ

def= pλ1 . . . pλs

is obviously an isomorphism of vector spaces.
Define an operator CJ∼ : Z (B∼

n ) →Z (B∼
n ) by

CJ∼(σ) = ∑
1≤i< j≤2n

j ̸=τ(i )

(i j )σ(τ(i )τ( j )).

Definition 21. The twisted cut-and-join operator is a linear map C J∼ : C[p]n → C[p]n

making the following diagram commutative:

(3.3) Z [B∼
n ]

CJ∼
//

Ψ

��

Z [B∼
n ]

Ψ

��
C[p]n

C J∼
// C[p]n

Let λ,µ be partitions such that |λ| = |µ| = n. Take an element σ ∈ B∼
λ

and consider a
set

S(σ;µ)
def= {

(i , j )
∣∣1 ≤ i , j ≤ 2n, j ̸= i ,τ(i ), (i j )σ(τ(i )τ( j )) ∈ B∼

µ

}
.

Proposition 16 implies that for every x ∈ Bn and σ ∈ B∼
λ

the map (i , j ) 7→ (x(i ), x( j )) is
a bijection between S(xσx−1,µ) and S(σ,µ). So, the size of the set S(σ,µ) for σ ∈ B∼

λ
depends on λ and µ only.

We will be using “physical” notation for matrix elements of a linear operator:
CJ∼(C ∼

λ
) =∑

µ

〈
λ

∣∣CJ∼ ∣∣µ〉
C ∼
µ .

Theorem 22.
〈
λ

∣∣CJ∼ ∣∣µ〉= 1
2 #S(σ,µ) for any σ ∈ B∼

λ
.

Proof. By definition,

(3.4) CJ∼(C ∼
λ ) = ∑

σ∈B∼
λ

CJ∼(σ) = ∑
σ∈B∼

λ

∑
1≤i< j≤2n

j ̸=τ(i )

(i j )σ(τ(i )τ( j )).
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As it was noted above, (3.4) is a sum of identical summands, so

CJ∼(C ∼
λ ) = #B∼

λ

∑
µ

∑
1≤i< j≤2n

j ̸=τ(i )
(i j )σ(τ(i )τ( j ))∈B∼

µ

(i j )σ(τ(i )τ( j )).

for any fixed σ ∈ B∼
λ

, and therefore

CJ∼(C ∼
λ ) =∑

µ

∑
1≤i< j≤2n

j ̸=τ(i )
(i j )σ(τ(i )τ( j ))∈B∼

µ

∑
τ∈B∼

µ

τ

= 1

2

∑
µ

#
{

(i , j )
∣∣∣ j ̸= i ,τ(i ), (i j )σ(τ(i )τ( j )) ∈ B∼

µ

}
C ∼
µ . □

Consider the generating function H ∼(β, p) of the twisted Hurwitz numbers defined
as follows:

(3.5) H ∼(β, p) = ∑
m≥0

∑
λ

h∼
m,λ

m!
pλ1 pλ2 . . . pλsβ

m .

Theorem 23. H ∼ satisfies the cut-and-join equation ∂H ∼
∂β =C J∼(H ∼).

Proof. Fix a positive integer n and denote by H ∼
n a degree n homogeneous component

of H ∼. The twisted cut-and-join operator preserves the degree, so H ∼ satisfies the cut-
and-join equation if and only if H ∼

n does (for each n).
Let

Gn
def= ∑

m≥0

∑
λ:|λ|=n

n!h∼
m,λ

m!
C ∼
λ β

m ∈C[S2n],

where C ∼
λ

is defined by (3.1). An elementary combinatorial reasoning gives

Gn = ∑
m≥0

βm

m!
(CJ∼)m(e2n),

where e2n ∈ S2n is the unit element. Clearly

CJ∼(Gn) = ∑
m≥0

βm

m!
(CJ∼)m+1(e2n) = ∑

m≥1

βm−1

(m −1)!
(CJ∼)m(e2n) = ∂Gn

∂β
.

Applying Ψ one obtains ΨCJ∼(Gn) =Ψ( ∂Gn
∂β ) = ∂

∂βΨ(Gn). By (3.2), Ψ(Gn) = H ∼
n , hence

∂
∂βΨ(Gn) = ∂H ∼

n
∂β . By the definition of the twisted cut-and-join operator, ΨCJ∼(Gn) =

C J∼(Ψ(Gn)) =C J∼(H ∼
n ), and the equality

∂H ∼
n

∂β =C J∼(H ∼
n ) follows. □

Corollary 24. H ∼(β, p) = exp(βC J∼)exp(p1).

Proof. It follows from (1.1) that h0,λ = 1
n! if λ = 1n and h0,λ = 0 otherwise. Thus,

H ∼(0, p) = exp(p1), and the formula follows from Theorem 23. □

3.3. Explicit formulas. In this section we prove explicit formulas for the cut-and-join
operator (Theorem 25) and for twisted Hurwitz numbers (Theorem 28).

Theorem 25. The twisted cut-an-join operator is given by

C J∼ = ∑
i , j≥1

(i + j )pi p j
∂

∂pi+ j
+2i j pi+ j

∂2

∂pi∂p j
+ ∑

k≥1
k(k −1)pk

∂

∂pk

= ∑
i , j≥1

(i + j )(pi p j +pi+ j )
∂

∂pi+ j
+2i j pi+ j

∂2

∂pi∂p j
.
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Figure 4. Terms of CJ∼

(The two formulas are equivalent because there are k−1 pairs (i , j ) such that i , j ≥ 1 and
i + j = k.)

To prove Theorem 25 we calculate explicitly the matrix elements
〈
λ

∣∣CJ∼ ∣∣µ〉
for all

possible λ,µ.
Let σ ∈ Sn and 1 ≤ i < j ≤ n. The cycle structure of the product σ′ = (i j )σ depends

on the cycle structure of σ and on i and j as follows: if i and j belong to the same cycle
(x1, . . . , xℓ) of σ (where i = x1, j = xm), then σ′ contains two cycles (x1, . . . , xm−1) and
(xm , . . . , xℓ) instead (“a cut”). If i and j are in different cycles (x1, . . . , xm) and (y1, . . . , yk )
(where i = x1 and j = y1) then σ′ contains the cycle (x1, . . . , xm , y1, . . . , yk ) instead (“a
join”).

Let now σ ∈ B∼
λ
⊂ B∼

n where λ = 1a1 2a2 . . .nan (in other words, the element σ ∈ S2n

contains as pairs of τ-symmetric cycles of length s for s = 1, . . . ,n). Let 1 ≤ i < j ≤ 2n, j ̸=
τ(i ) and σ′ def= (i j )σ(τ(i )τ( j )) ∈ B∼

µ . The cyclic structure of σ′ depends on the positions of
i , j , τ(i ), τ( j ) and on the cycles of σ; there are three possible cases shown in Figure 4.

Case 1. Here µ is obtained from λ by a cut:

µ= 1a1 . . .mam+1 . . .kak+1 . . .ℓaℓ−1 . . .nan , m +k = ℓ,m < k,

or

µ= 1a1 . . .mam+2 . . .ℓaℓ−1 . . .nan , m = ℓ/2.

For a fixed σ ∈ B∼
λ

look for i , j such that σ′ def= (i j )σ(τ(i )τ( j )) ∈ B∼
µ . The element

σ contains 2aℓ cycles of length ℓ, so there are 2ℓaℓ possible positions for i . Inσ′

the elements i and j are in different cycles; if m < k then m may be the length of
either. So if m < k then j should be in the same cycle in σ as i , and the distance
between them is either m or k. So there are two possible positions for j once i
is chosen, and

〈
µ

∣∣CJ∼ ∣∣λ〉 = 1
2 #S(σ,µ) = 2ℓaℓ. If m = k = ℓ/2 then the position

for j is unique and
〈
µ

∣∣CJ∼ ∣∣λ〉= ℓaℓ.

Similar calculations are used in Case 2.
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Case 2. Here µ is obtained from λ by a join:

µ= 1a1 . . .mam−1 . . .kak−1 . . .ℓaℓ+1 . . .nan , m +k = ℓ,m < k,

or

µ= 1a1 . . .mam−2 . . .ℓaℓ+1 . . .nan , m = ℓ/2

If m < k then i may belong to the cycle of either length. If i belongs to the
cycle of length m then there are 2mam possible positions for it (cf. Case 1) and
2kak positions for j ; vice versa if i belongs to the cycle of length k. The matrix
element is then

〈
µ

∣∣CJ∼ ∣∣λ〉 = 4mkam ak . If m = k = ℓ/2 then i and j belong to
cycles of the same length m; the cycle containing j contains neither i nor τ(i ).
Hence there are 4am(am −1) possibilities for choosing a pair of cycles to contain
i and j , and m2 possible positions for i and j in them. Therefore

〈
µ

∣∣CJ∼ ∣∣λ〉=
2m2am(am −1).

Case 3. Here µ=λ. Like in the previous cases we have 2ℓaℓ possible positions for i and
ℓ− 1 positions for j ̸= τ(i ) (in the cycle τ-symmetric to the one containing i )
once i is fixed. Thus,

〈
µ

∣∣CJ∼ ∣∣λ〉=∑
ℓ 2ℓ(ℓ−1)aℓ.

Proof of Theorem 25. It follows from Theorem 22 and Definition 21 that C J∼pλ =∑
µ

〈
λ

∣∣CJ∼ ∣∣µ〉
pµ.

For a given λ there are three types of µ such that
〈
λ

∣∣CJ∼ ∣∣µ〉 ̸= 0 listed above. Hence
C J∼ is a sum of three terms.

Suppose µ is like in Case 1 with m < k. The monomial pλ contains pam
m pak

k paℓ
ℓ

and

the monomial pµ contains pam+1
m pak+1

k paℓ−1
ℓ

; the other factors are the same. So the term

in (25) acting on pλ and giving pµ is 2ℓpm pk
∂
∂pℓ

pλ = 2ℓaℓpµ =
〈
µ

∣∣CJ∼ ∣∣λ〉
pµ (actually

there are two equal terms in the sum: i = m, j = k or vice versa, hence the factor 2).
Ifµ is like in Case 1 with m=ℓ/2 then pλ contains paℓ/2

ℓ/2 paℓ
ℓ

andµ contains paℓ/2+2
ℓ/2 paℓ−1

ℓ
.

So the only term in (25) acting on pλ and giving pµ is

ℓp2
ℓ/2

∂

∂pℓ
pλ = ℓaℓpµ =

〈
µ

∣∣CJ∼ ∣∣λ〉
pµ.

The calculations for the two remaining cases are similar. □

By Theorem 25, C J∼ =C J 0 +R where

C J 0 =
∑

i , j≥1
(i + j )pi p j

∂

∂pi+ j
+ i j pi+ j

∂2

∂pi∂p j

is the classical cut-and-join, and

R = ∑
i , j≥1

pi+ j

(
(i + j )

∂

∂pi+ j
+ i j

∂2

∂pi∂p j

)
.

The one-parametric family

∆α
def= C J 0 + (α−1)R = ∑

i , j≥1
(i + j )

(
pi p j + (α−1)pi+ j

) ∂

∂pi+ j
+αi j pi+ j

∂2

∂pi∂p j

is called [9] the Laplace–Beltrami operator; in particular, ∆1 = C J 0 is the classical cut-
and-join and ∆2 = C J∼ the twisted cut-and-join. By the classical results of [9, p. 376
and after], the eigenvalues (and eigenvectors) of∆α are indexed by partitions. The eigen-
value corresponding to λ= (λ1 ≥ ·· · ≥λs ) is equal to

e(λ,α) =
s∑

i=1
λi (αλi +2−2i −α).
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The corresponding eigenvector is a polynomial J (α)
λ

(p) of degree |λ| def= λ1+·· ·+λs called
Jack polynomial; it is normalized so that the coefficient at pn

1 in it is 1. Polynomials

Zλ
def= J (2)

λ
are called zonal.

Theorem 26 ([9]). We have∑
λ

J (α)
λ

(p)J (α)
λ

(q)

Hλ(α)H ′
λ

(α)
= exp

(∑
k≥1

pk qk

kα

)
,

where Hλ(α)
def= ∏

(i , j )∈Y (λ)(αa(i , j )+ℓ(i , j )+1) and H ′
λ

(α)
def= ∏

(i , j )∈Y (λ)(αa(i , j )+ℓ(i , j )+α).
Here Y (λ) is the Young diagram of the partition λ, and a(i , j ) and ℓ(i , j ) are the arm and
the leg, respectively, of the cell (i , j ) ∈ Y (λ).

Substituting q1 =α, q2 = q3 = ·· · = 0 and taking into account the normalization of the
Jack polynomials one obtains

Corollary 27.
∑
λ

α|λ| J (α)
λ

(p)

Hλ(α)H ′
λ

(α)
= exp(p1).

Taking now α= 2 and substituting the formula of Corollary 27 into Corollary 24, one
obtains

Theorem 28. H ∼(β, p) =∑
λ

exp
(
2β

∑
i
λi (λi − i )

) 2|λ|Zλ(p)

Hλ(2)H ′
λ

(2)
.

This is a twisted analog of the formula expressing the usual Hurwitz numbers via
Schur polynomials, see [6].

Example 29. The zonal polynomials Zλ for small λ are

Z[1] = p1, with H[1](2)H ′
[1](2) = 2

Z[1,1] = p2
1 −p2 with H[1,1](2)H ′

[1,1](2) = 12

Z[2] = p2
1 +2p2 with H[2](2)H ′

[2](2) = 24

Z[1,1,1] = p3
1 −3p2p1 +2p3 with H[1,1,1](2)H ′

[1,1,1](2) = 144

Z[2,1] = p3
1 +p2p1 −2p3 with with H[2,1](2)H ′

[2,1](2) = 80

Z[3] = p3
1 +6p2p1 +8p3 with H[3](2)H ′

[3](2) = 720

This gives us the first few terms in the expansion of H ∼(β, p):

H ∼(β, p) = p1 +
p2

1

6
(2e−2β+e4β)+ p2

3
(−e−2β+e4β)+ p3

1

90
(9e2β+e12β+5e−6β)

+ p2p1

30
(2e12β+3e2β−5e−6β)+ p3

45
(4e12β−9e2β+5e−6β)+ . . .

=
(
p1 +

p2
1

2
+ p3

1

6
+ . . .

)
+β(2p1 +2p1p2 + . . . )

+β2(2p2
1 +2p2 +2p3

1 +2p1p2 +8p3 + . . . )+ . . . ;

they agree with (3.5) and Example 20.

4. Algebro-geometric Model: Twisted Branched Coverings

A classical notion of the branched covering was extended to the non-orientable case
by G. Chapuy and M. Dołęga in [2]. Let N denote a closed surface (compact 2-manifold
without boundary, not necessarily orientable), and p : N̂ → N , its orientation cover. As
above, denote by T : N̂ → N̂ an orientation-reversing involution without fixed points
such that p ◦T = p. Also denote by J : CP 1 → CP 1 the complex conjugation, and let

H
def= CP 1/(z ∼J (z)) =H∪ {∞} whereH⊂C is the upper half-plane;H is homeomorphic

to a disk. Denote by π :CP 1 →H the quotient map.
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Definition 30 ([2]). A continuous map f : N →H is called a twisted branched covering
if there exists a branched covering f̂ : N̂ →CP 1 such that

(1) π◦ f̂ = f ◦p, and
(2) all the critical values of f̂ are real.

Property (1) is equivalent to saying that f̂ is a real map with respect to T , that is,
f̂ ◦T = J ◦ f̂ . The involution T has no fixed points, so the critical points of f̂ come
in pairs (a,T (a)), the ramification profile of every critical value c ∈ RP 1 ⊂ CP 1 of f̂ has
every part repeated twice: (λ1,λ1, . . . ,λs ,λs ), and deg f̂ = 2n is even. In this case we
say that the ramification profile of the critical value π(c) ∈ ∂H of the map f : N → H is
λ= (λ1, . . . ,λs ).

The twisted branched covering f is called simple if all its critical values, except pos-
sibly ∞ ∈ H, have the ramification profile 211n−2. (Equivalently, each critical value of
f̂ has 2 simple critical points and 2n −4 regular points as preimages.) Let u ∈ ∂H be a
regular (not critical) value of f ; then the preimage f −1(u) ⊂ N consists of n points. Fix
a bijection ν : f −1(u) → {1, . . . ,n} (a labeling); then the triple ( f ,u,ν) is called a labeled
simple twisted branched covering.

Labeled simple twisted branched coverings are split into equivalence classes via
right-left equivalence: ( f1,u1,ν1) ∼ ( f2,u2,ν2) if there exist orientation-preserving dif-
feomorphisms D1 : N̂ → N̂ and D2 :CP 1 →CP 1 such that

• ( f1 transforms to f2) f̂1 ◦D1 = D2 ◦ f̂2,
• (D1 and D2 are equivariant) T ◦D1 = D1 ◦T and D2 ◦J =J ◦D2,
• (D1,D2 preserve labeling) D2(π−1(u1)) =π−1(u2) and ν2 ◦D1 = ν1.

For an integer m ≥ 0 and a partition λ denote by Dm,λ the set of equivalence classes
of labeled simple twisted branched coverings having m simple critical values and such
that the ramification profile of ∞ is λ.

Theorem 31. #Dm,λ = 1
2m #Sm,λ = 1

2m #Hm,λ = n!
2m h∼

m,λ.

Proof. The generating function D(β, p)
def== ∑

m≥0
∑
λ

#Dm,λ
n!m! pλ1 pλ2 . . . pλsβ

m is shown in
[2, Theorem 6.5 for b = 1] to satisfy the twisted cut-and-join equation

∂D

∂β
= 1

2
C J∼(D),

where C J∼ is given by equation (25).
Let m = 0, so the branched covering f̂ ∈D0,λ is unramified except possibly over ∞.

Denote by N0 ⊂ N̂ any connected component of N̂ , by n0, the degree of f̂
∣∣

N0
, and k

def=
# f̂

∣∣−1
N0

(∞). Then the Euler characteristic χ(CP 1 \{∞}) = 1 and therefore χ(N0 \ f̂ −1(∞)) =
χ(N0)−k = n0. The set N0 is a smooth compact 2-manifold, so 2 ≥χ(N0) = n0+k, imply-
ing n0 = k = 1. It means that f̂ is unramified over ∞, too, so λ= 1n and f̂ is a collection
of n orientation-preserving diffeomorphisms of spheres. Obviously, f̂ is unique up to
the right-left equivalence described above. Thus, #D0,1n = 1 and #D0,λ = 0 for other λ.
So, D(0, p) = exp(p1), and Corollary 24 implies that

D(β, p) ≡H ∼(β/2, p),

proving the theorem. □

Remark. Note that, unlike Theorem 17, we do not know any “natural” map between the
sets Dm,λ and Sm,λ (or H∼

m,λ). Finding one is a challenging topic of future research.
In [2], a one-parametric generalization of Hurwitz numbers is defined by counting

twisted branched coverings with parameter-dependent weights. The parameter value
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b = 0 gives classical Hurwitz numbers, and b = 1, twisted Hurwitz numbers. A natu-
ral one-to-one correspondence between Dm,λ and Sm,λ would allow to transfer these
weights to ribbon decompositions and to define parametric Hurwitz numbers using
them.

Note also that in [2], more general two-part Hurwitz numbers were studied; currently
we do not know other models for them.
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