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Construction of Anosov flows in

dimension 3 by gluing blocks

Neige Paulet

(Recommended by Boris Hasselblatt)

Abstract. We present a new result allowing us to construct Anosov
flows in dimension 3 by gluing building blocks. By a building block,
we mean a compact 3-manifold with boundary P , equipped with a C 1

vector field X , such that the maximal invariant set
⋂

t∈R X t (P ) is a sad-
dle hyperbolic set, and such that ∂P is quasi-transverse to X , i.e., trans-
verse except for a finite number of periodic orbits contained in ∂P .
Our gluing theorem is a generalization of a recent result of F. Béguin,
C. Bonatti, and B. Yu who only considered the case where ∂P is trans-
verse to X . The quasi-transverse setting is much more natural. Indeed,
our result can be seen as a counterpart of a theorem by Barbot and Fen-
ley which roughly states that every 3-dimensional Anosov flow admits
a canonical decomposition into building blocks (with quasi-transverse
boundary). We will also present a number of applications of our theo-
rem.

1. Anosov flows

A C 1-flow X t on a closed manifold M is said to be Anosov if there exists an X t -
invariant decomposition of the tangent bundle into the sum T M = E ss ⊕R.X ⊕ E uu ,
where X is the vector field which generates the flow X t , the vectors of E ss are exponen-
tially contracted and the vectors of E uu exponentially expanded by the differential of the
flow X t in the future (see Figure 1).

This definition appeared in the 1960s, when D. Anosov studied the qualitative dynam-
ical properties of the geodesic flow on Riemannian manifolds with negative curvature in
his famous article [1], which became the prototype example of an Anosov flow.

As Anosov flows are structurally stable, one can hope to obtain a complete classi-
fication of their orbital equivalence classes on a given manifold by a finite number of
combinatorial invariants. Such a classification in dimension 3 (the minimal dimension
for an Anosov flow) is still today the motivation of many works and is far from being
completed.

Anosov flows are also remarkable for the interactions which appear between the dy-
namics of the flow and the topology of the underlying manifold, and this particularly in
dimension 3. For certain classes of 3-manifolds (torus bundles over the circle, or Seifert
manifolds for example), the topology of the manifold almost completely determines the
dynamics of the Anosov flow it can carry, up to orbital equivalence. On the other hand,
there are 3-manifolds which carry several non-orbitally equivalent Anosov flows.
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Figure 1. Local picture of an orbit of an Anosov flow

The main object of this paper is the construction of new examples of Anosov flows
on 3-manifolds.

2. Previous construction of Anosov flows

The two standard examples of 3-dimensional Anosov flows are the following.

• (geodesic flow) Let (S, g ) be a Riemannian surface. The geodesic flow of S is the
flow X t : T 1S → T 1S on the unitary tangent bundle of S, which maps the pair
(p, v) ∈ T 1S to the pair X t (p, v) = (c(t ),c ′(t )) corresponding to the position and
velocity at time t of the unique geodesic c : R→ S such that (c(0),c ′(0)) = (p, v).
If the Riemannian metric g is negatively curved, then the geodesic flow X t on
M := T 1S is Anosov.

• (suspension) Let A be a matrix of SL2(Z) and Ā the automorphism induced on
the torus T2 = R2/Z2. The suspension manifold of A is the quotient MA :=Tn ×
[0,1]/(x,1) ∼ (Āx,0). It is a closed 3-manifold. The suspension flow X t

A of A is
the projection on MA of the horizontal flow generated by the vector field ∂/∂t
on the product Tn × [0,1] equipped with the coordinates (x, t ). If the matrix
A ∈ SL2(Z) is hyperbolic, in other words it has no eigenvalues of modulus 1, then
the suspension flow of A is Anosov.

These were the only examples of Anosov flows for decades. These two flows can also
be described as the action of a one-parameter subgroup of a Lie group G , acting on a
quotient of G by a co-compact lattice. Such a flow is called an algebraic flow. In the
1980s, the first examples of non-algebraic Anosov flows appeared. We present a number
of constructions of such flows.

2.1. Franks-Williams construction. J. Franks and B. Williams construct in [18] the first
non-transitive Anosov flow in dimension 3 by the Blow up – Excise – Glue technique. Let
us give some details. Start with the suspension of the torus automorphism A : (x, y) 7→
(2x + y, x + y). This is an Anosov flow X t

A on a closed 3-manifold MA . Let γ be the the
periodic orbit induced by the fixed point (0,0). One can perform a bifurcation (called a
bifurcation derived from Anosov, see for example [19, Subsection 2.2.2] and Figure 2) on
the flow in a neighborhood of γ to create an attractive periodic orbit γ+. When remov-
ing a small tubular neighborhood of γ+, one get a manifold P with a torus boundary,
equipped with a vector field X transverse to ∂P , and such that the maximal invariant
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set
⋂

t∈R X t (P ) is a hyperbolic repeller. By a result of Thurston, P is a hyperbolic mani-
fold homeomorphic to the complement of the figure eight knot in S3. The pair (P, X ) is
an example of a building block. Consider another copy P ′ = P equipped with the inverse
vector field X ′ = −X . The construction consists in gluing the manifold P with a copy
P ′ = P equipped with the inverse vector field X ′ =−X along their boundary. The authors
shows that there is a way to glue this two components with a gluing map ϕ : ∂P → ∂P ′

such that the resulting vector field Z induced by X and X ′ on the closed 3-manifold
M := P ∪P ′/ϕ generates an Anosov flow. This flow admits two basic pieces which are
the repeller of X in P and the attractor of X ′ in P ′, and therefore is not transitive. The key
element is that the gluing map ϕ maps the unstable manifold of the repeller of X in P
transverse to the stable manifold of the attractor of X ′ in P ′, which allows us to preserve
the hyperbolic behaviour of the two pieces and create a global hyperbolic structure.

Figure 2. Attractive bifurcation derived from Anosov on the orbit γ

2.2. Handel–Thurston construction. M. Handel and W.P. Thurston construct in [20]
the first non-algebraic transitive Anosov flow by performing a surgery on the geodesic
flow of a hyperbolic surface. The setting is as follows. Consider a closed hyperbolic ori-
entable surface Σ and a finite collection of disjoint closed simple geodesics {ci }. Denote
X t the geodesic flow on the unit tangent bundle M = T 1Σ. The union of the fibers above
ci in M is a torus Ti , which contains two periodic orbits of X t , and transverse to X t on
the complementary of these orbits. It is said to be quasi-transverse to the flow (Figure 3).
The Handel–Thurston surgery consists in cutting M along the Ti torus, and gluing back
together the pieces P j thus obtained by composing by Dehn twists fi : Ti → Ti along
the periodic orbits. Such gluing maps can be chosen so that they preserve the vector
field while destroying the fibered structure. Under a certain positivity assumption on
the twists fi , the resulting flow is an Anosov flow Y t on a manifold N . This flow is al-
ways transitive because it preserves a volume form. The manifold N which carries this
flow is a graph manifold, i.e., a collection of Seifert pieces which is not a Seifert space.
By a result of Tomter [23] the resulting flow cannot be algebraic.

Both the example of Franks–Williams and Handel–Thurston are obtained by gluing
buildings blocks, i.e., manifolds with boundary P equipped with a vector field X . Let
us stress, however, one difference. In the Franks–Williams technique, the vector field
is transverse to the boundary of the building blocks, whereas in Handel–Thurston the
vector field is transverse to the boundary except for a (nonzero) finite number of periodic
orbits contained in this boundary.
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Figure 3. Fiber over a simple closed geodesic c

2.3. Bonatti–Langevin construction. The two previous examples are obtained by glu-
ing the boundary components of building blocks that have been cut out of a (blown-up)
Anosov flow. The example of C. Bonatti and R. Langevin [14] is the first example of an
Anosov flow constructed from a building block which is not obtained by surgery on an
initial standard Anosov flow. The block P is a circle bundle over a projective plane mi-
nus two disks, endowed with an explicit vector field X transverse to the boundary. The
boundary of P consists of two tori, one T1 along which the flow X t enters P , and the
other T2 along which the flow exits P . The set of orbits of the flow included in the in-
terior of P is reduced to a single hyperbolic saddle periodic orbit γ. In [14], the authors
exhibit a gluing diffeomorphism ϕ : T2 → T1 such that the flow induced by X on the
quotient manifold M := P/ϕ is Anosov. This is the first example of transitive Anosov
flow, transverse to an embedded torus, but not equivalent to a suspension. T. Barbot
generalizes this construction in [4].

This technique is very different from the “surgery and gluing” techniques on standard
Anosov flow of Franks–Williams and Handel–Thurston, where the gluing map is chosen
so that is does not destroy the hyperbolicity from the initial (blown-up) Anosov flow that is
already present everywhere. In the setting of Bonatti–Langevin, the dynamic inside the
block is an explicit piece of a very simple Morse Smale flow, and the orbits that escape
the block through the boundary do not have any hyperbolic behavior. The hyperbolicity
along the new recurrent orbits is created by the gluing process.

2.4. Béguin–Bonatti–Yu construction. F. Béguin, C. Bonatti, and B. Yu have developed
a general procedure for constructing Anosov flows by gluing “abstract building blocks” [11],
in the spirit of the Bonatti–Langevin construction but where the manifold and the dy-
namics are not explicit. A Béguin–Bonatti–Yu block is a pair (P, X ) where P is a compact
manifold with boundary equipped with a C 1 vector field X , transverse to ∂P , and such
that the maximal invariant set

⋂
t∈R X t (P ) forms a hyperbolic set whose strong stable

and strong unstable bundles are of dimension 1. The authors show that under very gen-
eral conditions, there is a way to glue the boundary components of P via a diffeomor-
phism ϕ : ∂P → ∂P which matches the components of the exit boundary (along which
the flow exits P ) with the components of the entrance boundary (along which the flow
enters P ) to obtain a closed manifold Pϕ := P/ϕ equipped with a vector field Xϕ induced
by X which is Anosov.
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The gluing procedure of such blocks along their boundary is a powerful technique to
show the flexibility of Anosov flows, and allows us to build Anosov dynamics on man-
ifolds with a rich and complicated topology. It allows for example to construct a 3-
manifold carrying a transitive and a non-transitive Anosov flow, and for every N , a man-
ifold MN carrying N pairwise non-orbitally equivalent Anosov flows.

However for Anosov flows constructed with this procedure, there always exist em-
bedded tori which are transverse to the flow. The existence of such tori is not a common
property. For example, the unit tangent bundle of a closed hyperbolic surface contain
plenty of incompressible tori, but one can easily prove that none of these is isotopic to a
torus transverse to the geodesic flow.

3. Decomposition of an Anosov flow: the modified JSJ decomposition

The counterpart of the Béguin–Bonatti–Yu gluing procedure is to find a good way to
decompose a given Anosov vector field Z on a closed orientable 3-manifold M along tori
into building blocks (Pi , Xi ). Informally, we want the pieces to be as simple as possible
(indecomposable), in a good position with respect to the vector field Z , and the decom-
position to be unique. The Anosov vector field Z on M can then be reconstructed by
gluing the blocks (Pi , Xi ) along their boundary.

Recall the Jaco–Shalen–Johannson (JSJ) theorem which states that any irreducible
connected orientable closed manifold M of dimension 3 can be cut along a minimal
finite collection of incompressible tori T = {T1, . . . ,Tn} into pieces P1, . . . ,Pm such that
each Pi is either atoroidal or admits a Seifert fibration. The tori T1, . . . ,Tn are unique up
to isotopy (hence so are the 3-manifolds with boundary P1, . . . ,Pm). Any 3-manifold M

that carries an Anosov vector field X is irreducible (since its universal covering isR3), and
thus admits a JSJ-decomposition along incompressible tori. In [5], the authors study in
detail the “optimal” position of an incompressible torus T embedded in an orientable
manifold M with respect to the Anosov vector field X on M . We will say that the torus
T is quasi-transverse to X if T contains a finite (possibly zero) number of periodic orbits
O∗ = {O1, . . . ,On} of the flow, X is transverse to T on T àO∗ is transverse to X on the com-
plementary of the orbits O∗, and the transverse orientation given by the vector field X
on two adjacent components of T àO∗ never coincide (see Figure 4).

Figure 4. A torus T quasi-transverse to a vector field X , containing
two periodic orbits of X

T. Barbot and S. Fenley show [5, Theorem 6.10] that any incompressible torus em-
bedded in a 3-manifold M carrying an Anosov vector field X is homotopic to a torus
quasi-transverse to X and weakly embedded (embedded outside the periodic orbits of X
contained in the torus). This result gives a modified JSJ decomposition of an Anosov flow
(see [10, Section 2.2] for a precise statement) which is unique up to homotopy along the
flow. With the help of this decomposition of an Anosov flow in dimension 3, S. Fen-
ley and T. Barbot have started the intensive study of Anosov flows on toroidal mani-
folds [5] and their classification in restriction to JSJ Seifert pieces and to some graph
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manifolds [6, 7, 8]. Let us stress that Anosov flows on atoroidal manifolds or in restric-
tion to atoroidal pieces of the JSJ decomposition are still very poorly understood.

In conclusion, up to some technical details, any Anosov flow in a toroidal manifold
can be canonically decomposed into blocks (Pi , Xi ) where Pi is a manifold with bound-
ary, and Xi is a C 1 vector field on Pi which is quasi-transverse to the boundary ∂Pi .
It is therefore natural to try to generalize the Béguin–Bonatti–Yu construction for such
“quasi-transverse building blocks”. This is the goal of our work.

4. Presentation of the Gluing Theorem

4.1. Definitions.

Definition 4.1 (Surface quasi-transverse to a vector field). Let S be a transversally ori-
entable surface embedded in a 3-dimensional manifold M equipped with a vector field X .
We say that S is quasi-transverse to the vector field X if

(1) S contains a finite collection O∗ = {O1, . . . ,On} of periodic orbits of X
(2) X is transverse to S àO∗,
(3) each orbit Oi ∈ O∗ is two-sided in S and the orbits of X cross these two local

sides in two opposite directions.1

Note that a surface S transverse to the vector field X is a quasi-transverse surface with
O∗ = ;. We denote X t the flow generated by the vector field X . Recall that a compact
setΛ invariant by the flow of a vector field X on a manifold M is said to be hyperbolic of
index (1,1) for X if there exists an X t -invariant decomposition of the tangent space of M
overΛ into a sum T M

∣∣
Λ = E ss ⊕R.X ⊕E uu of 1-dimensional subbundles, and constants

λ> 1 and C > 0 such that

∥(X t )∗v∥ ≥Cλt∥v∥, ∀v ∈ E uu , ∀t ≥ 0,
∥(X t )∗v∥ ≥Cλ−t∥v∥, ∀v ∈ E ss , ∀t ≤ 0.

for a Riemannian metric on M .

Definition 4.2 (Building block). Let P be a compact 3-dimensional manifold with bound-
ary, provided with a vector field X of class C 1. We say that the pair (P, X ) is a building
block (or more simply a block) if

(1) the boundary ∂P is quasi-transverse to the vector field X ,
(2) the maximal invariant set of the flow of X in P , denoted Λ := ⋂

t∈R X t (P ), is an
index (1,1) hyperbolic set for the flow of X .

In the case where the collection O∗ is empty, the boundary ∂P is transverse to the
vector field X . We recover the definition of a hyperbolic plug in the sense of [11, Defini-
tion 3.1 and Definition 3.2].

Building blocks should be thought as the basic pieces of a building game, our goal
being to build some Anosov flows by gluing a collection of such blocks together. From
a formal point of view, a finite collection of building blocks can always be viewed as a
single non-connected building block.

Consider such a building block (P, X ). The orbits of O∗ split ∂P into two open regions,
transverse to the vector field X : one on which the field X is pointing inwards and one on
which it is pointing outwards. We call them respectively the entrance boundary and exit
boundary, and denote them P in and P out (Figure 6).

1Formally, this means that the transverse orientation induced by the vector field X on S on the two local
sides of Oi cannot simultaneously coincide with a global transverse orientation of the surface S.
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Figure 5. Boundary of a block (P, X ) in the neighborhood of a periodic
orbit Oi ∈O∗

Figure 6. Building block (P, X ) whose boundary contains two periodic orbits.

Definition 4.3 (Gluing map). Let (P, X ) be a building block. A gluing map of (P, X ) is
an involution ϕ : ∂P → ∂P which identifies pairwise the connected components of ∂P ,
maps P out to P in, and the oriented orbits of O∗ to the oriented orbits of O∗.

It is clear that these conditions are sufficient for the quotient space Pϕ := P/ϕ to be a
closed smooth 3-dimensional manifold, and are necessary for X to induce a C 1 vector
field Xϕ on Pϕ. In the case where X induces a vector field Xϕ on Pϕ, there is in general no
reason for the flow of Xϕ to be an Anosov flow: the gluing map may create for instance an
open set of periodic orbits for the flow of Xϕ, which is an obvious obstruction. Necessary
conditions to obtain an Anosov flow are encoded in the stable and unstable manifolds
of the block and the way they are glued.
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Let W s and W u be respectively the stable and the unstable set of the maximal in-
variant set Λ := ⋂

t∈R X t (P ) of the block (P, X ). The hyperbolicity of index (1,1) of Λ im-
plies that W s and W u are 2-dimensional laminations, embedded in P , transverse to each
other.

Proposition and Definition (Boundary lamination). The set L := (W u ∪W s )∩∂P is
a 1-dimensional lamination on ∂P , called the boundary lamination of (P, X ) (see Fig-
ure 7).

Figure 7. Boundary lamination L on the entrance boundary P in in
the neighborhood of a periodic orbit Oi ∈O∗

We define the following conditions on the boundary lamination and the gluing map.

Definition 4.4.

(1) We say that the boundary lamination L is a pre-foliation if it can be extended
by a foliation on ∂P .

(2) We say that the boundary lamination L is filling, or that the block (P, X ) is full, if
L is a pre-foliation and no connected component of the complementary ∂PàL

is bounded by compact leaves.
(3) We say that a gluing map ϕ of (P, X ) (see Definition 4.3) is strongly quasi-trans-

verse if the pair of laminations (ϕ∗(L àO∗),L àO∗) on ∂P àO∗ can be extended
by a pair of transverse foliation on ∂P àO∗.

If L and ϕ satisfies the 3 items of Definition 4.4, it follows that the connected com-
ponents of ∂P are tori or Klein bottle and the connected components of ∂P à(ϕ∗L ∪L )
are rectangles bounded by two disjoint arcs of leaves of L and two disjoint arcs of leaves
of ϕ∗L . The condition 1 and 3 are necessary conditions to glue the boundary compo-
nents of (P, X ) together to create an Anosov vector field Xϕ on Pϕ. Indeed the manifold
Pϕ is then provided with a pair of invariant transverse foliations which are the stable and
unstable foliation F s and F u of the Anosov flow. The surface ∂P projects onto Pϕ as a
surface S quasi-transverse to Xϕ, and the pair (F s ,F u) induces a pair of 1-dimensional
foliations on S which coincide along the periodic orbits of Xϕ contained in S, and are
transverse to each other on the complementary of these periodic orbits, and which con-
tains the projection of the pair (L ,ϕ∗(L )). The condition 2 is a technical condition that
should not be necessary, but our proof relies heavily on this assumption.



Construction of Anosov flows in dimension 3 by gluing blocks 55

Figure 8. An example of a strongly quasi-transverse gluing diffeo-
morphism ϕ on the left, and quasi-transverse but not strongly quasi-
transverse on the right

Figure 9. Building block (P, X ) with filling boundary lamination L ,
and a strongly quasi-transverse gluing diffeomorphism ϕ

In order to do our construction, we want to reduce the block (P, X ) to a “normalized”
form by an isotopy among the building blocks. For a strongly quasi-transverse gluing
mapϕ, we want to modify it by isotopy among gluing maps while preserving the pattern
of the intersection of the lamination ϕ∗L with L on ∂P . Let us define formally the
equivalence relation that we obtain.
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Definition 4.5 (Strongly isotopic triples). Let (P0, X0,ϕ0) and (P1, X1,ϕ1) be two building
blocks provided with gluing maps. The triples are said to be strongly isotopic if

(1) there exists a continuous family (Pt , X t ,ϕt ) of building blocks endowed with glu-
ing map,2

(2) there exists a continuous family of homeomorphisms ht : ∂P 0àO0,∗ → ∂P tàOt ,∗
which preserve the boundary lamination, such that h0 = Id and h1 maps the pair
(L0 àO0,∗, (ϕ0)∗(L0 àO0,∗)) on the pair (L1 àO1,∗, (ϕ1)∗(L1 àO1,∗)).

Unlike the Béguin–Bonatti–Yu blocks, one cannot simply ask for a continuous family
(Pt , X t ,ϕt ) of blocks and strongly quasi-transverse gluing maps. The presence of peri-
odic orbits contained in the boundary makes this isotopy a relation too rigid for what we
want to do. Our strong isotopy relation above is a slightly weakened version of the strong
isotopy relation of Béguin–Bonatti–Yu blocks and gluing maps [11] in the case where the
collection O∗ of periodic orbits contained in the boundary of the block is empty, due to
the poor regularity of the ht family (assumed to be continuous and not C 1). This strong
triple isotopy relation is nevertheless sufficient, as it guarantees that

• the quotient manifolds P0/ϕ0 and P1/ϕ1 are homeomorphic;
• the pattern of the bi-laminations (L0, (ϕ0)∗L0) and (L1, (ϕ1)∗L1) are the same;
• there are continuations3 of the blocks (P0, X0) and (P1, X1) which are orbitally

equivalent.

The pattern of the intersection of the laminationϕ∗L with L is a crucial data for the
analysis of the dynamic of the new vector field Xϕ. It is a key element for constructing
non-orbitally equivalent Anosov vector fields Xi on a closed manifold M , by gluing the
boundary components of a block (P, X ) by isotopic gluing mapsϕi , but whose transverse
intersection patterns of the lamination L and ϕ∗L are not equivalent [11, 16]. Con-
versely, it is also the key element of the uniqueness theorem of an Anosov flow obtained
by gluing a Béguin–Bonatti–Yu block. In [12], F. Béguin and B. Yu show that if Z0 and Z1

are two transitive Anosov vector fields, respectively obtained by gluing a block (P0, X0)
and (P1, X1) via a diffeomorphism ϕ0 and ϕ1, and such that the associated triples are
strongly isotopic, then the fields Z0 and Z1 are orbitally equivalent. This question is
not treated here, but it seems natural that this uniqueness result carries over to the case
where the boundary of the blocks is quasi-transverse to the vector field. More precisely,
we make the following conjecture:

Conjecture 4.6. Let (P0, X0,ϕ0) and (P1, X1,ϕ1) be two building blocks equipped with
gluing map such that the triples are strongly isotopic. For i = 0,1, we assume that Xi in-
duces a C 1 vector field Zi on the closed manifold Mi := Pi /ϕi , such that Mi is orientable
and Zi is a transitive Anosov vector field. Then Z0 on M0 and Z1 on M1 are orbitally
equivalent.

4.2. Gluing Theorem. The proof of the following gluing theorem can be found in [22,
Theorème 1], and is the goal of the forthcoming paper [21].

Theorem 1 (Gluing theorem). Let (P, X ) be a full building block, and ϕ be a strongly
quasi-transverse gluing map of (P, X ). There exists a triple (P1, X1,ϕ1) strongly isotopic
to (P, X ,ϕ) such that X1 induces an Anosov vector field on the closed 3-manifold Pϕ1 :=
P1/ϕ1.

2More formally, we ask for the manifolds Pt to be embedded in a common 3-manifold P̃ equipped with
extensions X̃ t of Xt and the family to be continuous in the C 1-topology.

3That is, an embedding of the block in the interior of a 3-manifold endowed with an extension of the vector
field.
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This theorem is an analog of the Béguin–Bonatti–Yu gluing theorem [11, Theorem 1.5]
in the case where the set O∗ of periodic orbits of X contained in ∂P is empty, and extends
it to blocks containing attractors or repellers. Moreover it includes the Franks–Williams
surgery, the Handel–Thurston surgeries and their generalizations. Finally, it allows us to
consider the most natural building blocks for Anosov flows in dimension 3, in the sense
that the quasi-transverse position is the “optimal” position of an incompressible closed
surface embedded in an Anosov flow according to the work of T. Barbot and S. Fenley
mentioned above.

4.3. Some ideas of the proof. The proof of our gluing theorem is a generalization of that
of Béguin–Bonatti–Yu’s. Although it uses the same ideas, the generalization is far from
being straightforward, and is quite technical. It consists of the following 5 steps.

(1) We modify a candidate triple (P, X ,ϕ) by strong isotopy to put it in a “normalized
form”. Informally, a triple (P, X ,ϕ) is said to be normalized if

• the dynamic of X is linear in a neighborhood of the maximal invariantΛ,
• the multipliers of all the orbits O1, . . . ,On ∈ O∗ contained in the boundary are

the same,
• there is a pair of transverse invariant 2-dimensional foliations (G s ,G u) on P

that extends the laminations (W s ,W u), and which are affine in the neighbor-
hood of theΛ,

• the boundary ∂P is in a canonical position in a neighborhood of the periodic
orbits Oi ∈O∗,

• the gluing map ϕ is trivial in a neighborhood of the orbits O∗.
For the rest of the proof, we work with a normalized triple.

(2) In step 2, we study the hyperbolicity properties of the crossing map fout,in : P in →
P out of the flow of X from the entrance boundary P in to the exit boundary P out. We
show that fout,in expands the direction tangent to G u ∩P in arbitrarily strongly in a
small neighborhood of the boundary lamination L , and the analogous result for the
inverse map along the direction tangent to G s .

(3) In step 3, we show how to “spread” the natural hyperbolicity of fout,in by a coordinate
change on the boundary of P . We want the crossing map to expands the direction
tangent to G u , not only in the neighborhood of L , but almost on all P in (and the
analogous for the inverse map along the direction tangent to G s ). This spreading
will depends on 3 parameters.

(4) In step 4, we show that we can use this change of coordinates to modify the gluing
map ϕ turning it into a gluing map ψ strongly isotopic to ϕ, depending on the 3
parameters. The goal is to create hyperbolicity along the new recurrent orbits of the
induced flow Xψ, in a way which is compatible with the natural hyperbolicity of the
initial flow X .

(5) In the final step 5, we show that for such a choice of parameters and gluing map
ψ, the flow Xψ induced by the initial flow X on the closed manifold Pψ admits a
hyperbolic structure along all orbits, and therefore is Anosov, which completes the
proof of the theorem.

Actually, we did a small cheat. The latter strategy can be carried out under the addi-
tional assumption that the maximal invariant set of the block contains no attractor nor
repeller, which is actually the statement of [22, Theorème 1]. A trick allows us to reduce
the general case to this situation.
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Figure 10. A quasi-Morse–Smale foliation on S =T2

4.4. Transitivity criterion. We show a transitivity criterion of an Anosov vector field Xϕ

on a closed manifold Pϕ obtained by gluing a full block (P, X ) with a strongly quasi-
transverse gluing map ϕ. We define an oriented graph G = G(P, X ,ϕ) analogous to the
Smale’s graph, associated to a building block (P, X ) and to a gluing map ϕ, as follows:

• the vertices are the basic pieces Λi of the hyperbolic maximal invariant set Λ
of (P, X ),

• there exists an oriented edge from Λi to Λ j if and only if W u(Λi ) intersects
W s (Λ j ), or ϕ(W u(Λi )) intersects W s (Λ j ).

Proposition 4.7. the Anosov vector field Xϕ on Pϕ is transitive if and only if the graph
G(P, X ,ϕ) is strongly connected.

We refer to [22, Proposition 6.2] for the proof.

5. Applications

We now present some applications of our theorem. The proofs can be found in [22].

5.1. Realization of a quasi-transverse bi-foliation in an Anosov flow. As first applica-
tion, we prove that any type of quasi-transverse bi-foliation on a torus can be realized as
the trace of the stable and unstable foliation on a quasi-transverse torus embedded in a
transitive Anosov flow. More formally,

Definition 5.1 (Quasi-Morse–Smale foliation). Let F be a 1-dimensional foliation on a
closed orientable surface S. We say that F is a quasi-Morse–Smale foliation if it satisfies
the following conditions:

(1) There exists a finite number of compact leaves Γ= {γ1, . . . ,γN };
(2) Each half non-compact leaf accumulates on a single compact leaf;
(3) Each oriented compact leaf γ has a contracting or expanding holonomy on each

of its two side.

The (possibly empty) set of elements of Γ such that the holonomy is contracting on one
side and expanding on the other is denoted by Γ∗, and called the set of marked compact
leaves. We further require

(4) There exists a splitting S àΓ∗ = Sin ∪Sout into two disjoint open sets such that
each leaf γ∗ ∈ Γ∗ is adjacent to a connected component of Sin and to a con-
nected component of Sout.
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Definition 5.2 (Quasi-transverse bifoliation). Let (F1,F2) be a pair of quasi-Morse–
Smale foliations on an orientable surface S. We say that (F1,F2) is a quasi-transverse
bifoliation if

(1) F1 and F2 have the same set of marked leaves Γ∗,1 = Γ∗,2 = Γ∗,
(2) F1 and F2 are transverse on the complementary S àΓ∗,
(3) Sin

1 = Sout
2 ,

where S àΓ∗,i = Sin
i ∪Sout

i is the decomposition of S àΓ∗,i relative to Fi .

We can provide the compact leaves of a quasi-Morse–Smale foliation F on a surface
S with a canonical orientation: this is the orientation such that the holonomy of the
oriented compact leaf is contracting on Sin and expanding on Sout. We say that F is dy-
namically oriented. For a pair (F1,F2) of dynamically oriented quasi-transverse bifolia-
tion on an oriented torus S =T2, we associate a finite combinatorial data σ=σ(F1,F2)
in the following way.

Definition 5.3 (Combinatorial type of quasi-transverse bi-foliation). Let

σ=σ(F1,F2) : Z/nZ −→ {1,2}× ({→ ,← }× {↑ ,↓ }× {→ ,← })

be the map defined by

(1) σ(k) = (1,∗) if and only if γk is a leaf of F1, and σ(k) = (2,∗) if and only if γk is a
leaf of F2 àΓ∗;

(2) σ(k) = (∗, (∗,↑,∗)) if and only if the leaf γi is freely homotopic to γ0 as oriented
paths;

(3) σ(k) = (i , (→,∗,∗)) if and only if the Fi -holonomy of γk on its left-hand side 4 is
contracting;

(4) σ(k) = (i , (∗,∗,←)) if and only if the Fi -holonomy of γk on its right-hand side is
contracting.

We say that σ is a combinatorial type of the quasi-transverse bi-foliation (F1,F2).

Figure 11. An example of a (complicated) quasi-transverse bi-
foliation on the torus and combinatorial type

Proposition 5.4 ([22, Proposition 7.5.4]). Let σ be a combinatorial type of a quasi-trans-
verse bi-foliation. There exists a transitive Anosov vector field Z on an oriented 3-manifold
M and an incompressible torus T embedded in M , quasi-transverse to Z , such that the
trace of the stable and unstable foliation F s and F u on T induces a bi-foliation (F1,F2)
on T of combinatorial type σ.

4the orientation of the torus S and the first leaf γ0 determines which side of γi is its left-hand and right-
hand side
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The proof consist in constructing a full transitive connected orientable building
block (P, X ) with two boundary components T1 and T2, and a prescribed “type” of quasi-
Morse–Smale lamination as boundary lamination, corresponding to the type of Fi on Ti .
We perform a construction that allow us to directly use the result of [11, Theorem 1.10]
on attracting blocks of Béguin–Bonatti–Yu with prescribed boundary foliation. We can
glue the boundary components of (P, X ) with a strongly quasi-transverse gluing map
ϕ : T1 → T2 respecting the pattern of the given combinatorial type σ(F1,F2). We can
then use Theorem 1, and get an Anosov flow satisfying Proposition 5.4.

5.2. Embedding of a building block into an Anosov flow. As a further application of
Theorem 1, we show that any full orientable block can be embedded in an Anosov flow:

Proposition 5.5 ([22, Proposition 8.0.1]). For any (transitive) full orientable block (P, X ),
there exists a (transitive) Anosov vector field Z on a closed orientable 3-manifold M , such
that (P, X ) is embedded in (M , Z ). More precisely, there exists a finite collection of in-
compressible tori T embedded in M , quasi-transverse to Z , such that the closure of one
connected component of M àT is a compact submanifold with boundary diffeomorphic
to P and such that the restriction of Z on P is orbitally equivalent to X .

The idea is to construct a transitive block (Q,Y ) whose boundary lamination LY

matches a lamination strongly quasi-transverse to the boundary lamination LX of (P, X ),
and to glue the boundaries of the two blocks via a strongly quasi-transverse gluing map
ϕ : ∂Q → ∂P . We can then apply Theorem 1 to say that, up to strong isotopy, the vector
fields X and Y induce an Anosov vector field Z on the manifold M = P ∪Q/ϕ.

5.3. Periodic orbit complements as JSJ pieces of transitive Anosov flows. The follow-
ing proposition allows us to realize periodic orbit complements of Anosov or pseudo-
Anosov flows as JSJ pieces of transitive Anosov flows. We recall that a C 1 flow X t on
a closed 3-manifold M is said to be pseudo-Anosov if it is locally modeled on a semi-
branched covering of an Anosov flow [15]. In other word it is a generalization of an
Anosov flow where we allow a finite number of singularities of stable and unstable folia-
tions of p-prong type, p ≥ 3.

Proposition 5.6. Let Γ= {γ1, . . . ,γn} be a finite collection of periodic orbits of a transitive
pseudo-Anosov vector field X on an orientable 3-manifold M . Assume that all the singu-
lar orbits of X are contained in Γ and that the complementary M àΓ is atoroidal. Then
there exists an orientable 3-manifold N carrying a transitive Anosov vector field Y such
that the JSJ decomposition of N is made of two atoroidal pieces P and P ′, both homeo-
morphic to MàΓ, and a periodic Seifert piece. The restriction of Y to P and P ′ is obtained
from X by a DA5 bifurcation on the orbits of Γ.

A Seifert piece in a 3-manifold M carrying an Anosov vector field X is said to be peri-
odic if there exists a Seifert fibration for which the regular fiber is homotopic to a power
of a periodic orbit of the flow of X .

We refer to the proof of [22, Proposition 10.0.7]. The idea is to perform successively
an attractive and a repelling DA bifurcation on each orbit γ1, . . . ,γn of the collection Γ.
We show the existence of solid tori Ti in the neighborhood of each γi , whose bound-
ary is quasi-transverse to the modified vector field, and such that the complementary
M à⋃

i Ti is a building block. We use Theorem 1 to glue this building block to one with
a “matching” strongly quasi-transverse boundary lamination.

5Derived from Anosov
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As a corollary of this proposition we obtain sufficient conditions for the complemen-
tary of a hyperbolic knot in S3 to be realized as an atoroidal JSJ piece of a transitive
Anosov flow. Here is an example of such knots.

Example 5.7 ([22, Proposition 10.4.3]). Let K = ∂(S1#S2#. . .#Sn) be a plumbing of n
copies of the Seifert surface of the figure eight knot. Then K is a hyperbolic fibered knot
and the complementary of K is an atoroidal JSJ piece of a manifold carrying a transitive
Anosov flow.

5.4. Gluing pieces of skewedR-covered Anosov flows. An Anosov flow on a 3-manifold
M is said to be R-covered if the leaf space of the lifted stable foliations F̃ s on the univer-
sal cover M̃ is separated (hence homeomorphic to R). It is said to be skewed R-covered
if it is moreover not orbitally equivalent to a suspension. The proposition below allows
us to cut building blocks out of a skewed R-covered Anosov flow along a collection of
incompressible tori.

Proposition 5.8 ([3, Theorem A’ and Theorem E]). Let Z be a skewed R-covered Anosov
vector field on a closed orientable 3-manifold M , whose stable and unstable foliations
are transversely orientable. Let T = {T1, . . . ,Tn} be a finite collection of incompressible
tori embedded in M , pairwise disjoint and pairwise non homotopic. Then there exists
a collection T ′ = {T ′

1, . . . ,T ′
n} of pairwise disjoint tori isotopic to T and quasi-transverse

to Z , and this collection is unique up to homotopy along the orbits of the flow. As a con-
sequence, if we set P :=M àT ′, then (P, Z

∣∣
P ) is a building block.

Definition 5.9 (Skewed R-covered Anosov block). In the setting of Proposition 5.8, we
call a skewed R-covered Anosov block any union of connected components of (P, Z

∣∣
P ).

Proposition 5.10. Let (P, X ) and (P ′, X ′) be two skewed R-covered Anosov blocks and
ϕ : ∂P → ∂P ′ a gluing map. There is a gluing map ψ isotopic to ϕ among gluing maps
such that the vector field Z induced by X and X ′ on P ∪P ′/ψ is Anosov.

We refer to the proof of [22, Proposition 11.0.2]. Let us add that the Anosov flow ob-
tained by Proposition 5.10 is still R-covered: this can easily be proved using knowledge
of the orbit space of Anosov flows [2]. Note that this statement does not require any as-
sumption on the action of the gluing map on the boundary laminations. This follows
from the particular type of foliations induced by the stable and unstable foliations of Z
on a quasi-transverse torus T embedded in a skewed R-covered Anosov flow: they both
contain no compact leaves other than the periodic orbits in the boundary, and are with-
out Reeb components (see Figure 12). This is a consequence of a result of T. Barbot [3].

Figure 12. Trace of the stable and unstable foliation on a quasi-
transverse torus embedded in a skewed R-covered Anosov flow

Any piece of geodesic flow or finite covering of geodesic flow is a skewed R-covered
Anosov block. Hence Proposition 5.10 generalizes the Handel–Thurston construction,
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as well as recent generalization by A. Clay and T. Pinski [16] and T. Barbot and S. Fen-
ley [9], and gets rid of the positivity constraint on the isotopy class of the gluing map.
Note, however, that it allows us to use blocks that are much more general than geodesic
flow pieces and that are not a priori cut out from the same Anosov flow. Recall that
skewed R-covered Anosov flows form a rich family of Anosov flows. S. Fenley showed
in [17] that any Anosov flow obtained by Dehn–Goodman–Fried surgeries of coherent
orientations on a suspension or a geodesic flow is skewed R-covered. C. Bonatti and
I. Iakovoglou showed in [13] that if X is an Anosov field obtained by Dehn–Goodman–
Fried surgeries from a suspension then any surgery on an ϵ-dense periodic orbit of X
yields a skewed R-covered Anosov flow.
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