
Mr
r Mathematics

esearch
eports

r
r

Christopher-Lloyd Simon

Conjugacy classes in PSL2(K)

Volume 4 (2023), p. 23-45.

https://doi.org/10.5802/mrr.16

© The authors, 2023.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Mathematics Research Reports is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org
e-ISSN: 2772-9559

https://doi.org/10.5802/mrr.16
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
www.centre-mersenne.org


M   athematics esearch eportsr r
Volume 4 (2023), 23–45

Conjugacy classes in PSL2(K)

Christopher-Lloyd Simon

(Recommended by Linus Kramer)

Abstract. We first describe, over a field K of characteristic different
from 2, the orbits for the adjoint actions of the Lie groups PSL2(K) and
PSL2(K) on their Lie algebra sl2(K). While the former are well known,
the latter lead to the resolution of generalised Pell–Fermat equations
which characterise the corresponding orbit. The synthetic approach
enables to change the base field, and we illustrate this picture over the
fields with three and five elements, in relation with the geometry of the
tetrahedral and icosahedral groups. While the results may appear fa-
miliar, they do not seem to be covered in such generality or detail by
the existing literature.

We apply this discussion to partition the set of PSL2(Z)-classes of
integral binary quadratic forms into groups of PSL2(K)-classes. When
K=Cwe obtain the class groups of a given discriminant. Then we pro-
vide a complete description of their partition into PSL2(Q)-classes in
terms of Hilbert symbols, and relate this to the partition into genera.
The results are classical, but our geometrical approach is of indepen-
dent interest as it may yield new insights into the geometry of Gauss
composition, and unify the picture over function fields.

Finally, we provide a geometric interpretation in the modular orb-
ifold PSL2(Z)\H for when two points or two closed geodesics corre-
spond to PSL2(K)-equivalent quadratic forms, in terms of hyperbolic
distances and angles between those modular cycles. These geomet-
ric quantities are related to linking numbers of modular knots. Their
distribution properties could be studied using the geometry of the qua-
dratic lattice (sl2(Z),det) but such investigations are not pursued here.
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1. Introduction

Adjoint action of PSL2(K) on sl2(K). Let us work over a field K of characteristic differ-
ent from 2. The automorphism group PGL2(K) of the projective line and its largest sim-
ple subgroup PSL2(K) play a fundamental role in various areas of mathematics. They ap-
pear, for instance, in algebraic geometry when K=C and in hyperbolic geometry when
K=R ; in arithmetics whenK=Q and in Galois theory whenK=Z/p.

The first step to understand (the representation theory of) those linear algebraic
groups is to describe their conjugacy classes, and more precisely the adjoint actions on
their Lie algebra sl2(K). These actions preserve the Killing form, which is a multiple of
the non-degenerate quadratic form det: sl2(K) →K. It is well known that PGL2(K) acts
transitively on every level set of det. After introducing the cross-ratio bir(a,b) ∈K of two
elements a,b ∈ sl2(K) with non-zero determinant, we will precise this statement.

Proposition 1.1. Let a,b ∈ sl(V) have determinant −δ ̸= 0 and bir(a,b) ∉ {1,∞}.
The matrices M ∈ PGL2(K) conjugating a to b have a well defined determinant in the

quotientK×/NrK(K[
p
δ]×), and its is equal to the class of bir(a,b).

In contrast, we will index the PSL2(K)-orbits inside {det =−δ} by the classes [χ] in the
quotient groupK×/NrK(K[

p
δ]), and parametrize each orbit (δ,χ) by the solutions inK×

K to the generalised Pell–Fermat equation x2 −δy2 = χ. In homological terms, the con-
jugacy problem in PSL2(K) has obstructions measured by the group K×/NrK(K[

p
δ]×),

and when they vanish the conjugacies form a torsor under the group of units {γ ∈K[
p
δ] |

Nr(γ) = 1}.

Theorem 1.2. Let a,b ∈ sl2(K) have determinant −δ ̸= 0 and bir(a,b) = 4χ ∉ {1,∞}. The
elements C ∈ SL2(K) such that CaC−1 = b are parametrized by the Pell–Fermat conic:

(x, y) ∈K×K : x2 −δy2 =χ, C (x, y) = x(1+ba−1)+ y(a+b).

In particular, a and b are conjugate by an element C (x, y) ∈ SL2(K) if and only if bir(a,b)
belongs to the subgroup of norms NrKK[

p
δ] ⊂ K× of the quadratic extension, and by

an element C (x,0) ∈ SL2(K)∩K[{a,b}] if and only if bir(a,b) belongs to the subgroup of
squares (K×)2 ⊂K×.

The proofs of these statements can be reduced to elementary linear algebra once we
thoroughly understand the geometry of the Lie algebra sl2(K) inside the quaternion al-
gebra gl2(K). In short, commutativity rhymes with colinearity whereas anti-commuta-
tivity rhymes with orthogonality.

We recall this background material in the first two sections and provide an amus-
ing application in the third to prove an analogue of Ptolemy’s identity for quadrilaterals
inscribed in the isotropic cone X of (sl2(K),det), relying on a natural quadratic desingu-
larisation ψ : K2 →X.

Classes of binary quadratic forms. By polarizing a binary quadratic form on K2 with
respect to the canonical symplectic form det, we obtain an isomorphism:

Q = l x2 +mx y + r y2 ∈Q(K2)
Q(v)=det(v,qv)←−−−−−−−−−→ q= 1

2

(−m −2r
2l m

) ∈ sl2(K)

between the Poisson algebra (Q(K2),disc) and the Lie algebra (sl2(K),−4det), conju-
gating the actions of PSL2(K) by change of variables and by conjugacy. After interpret-
ing the values of quadratic forms as the scalar products with elements in the isotropic
cone Q(v) = 〈q,ψ(v)〉, and computing that the products Qa(u)Qb(v) = 〈a,ψ(u)〉〈b,ψ(v)〉
for primitive vectors u, v ∈K2 are equivalent to the cross-ratio bir(Qa ,Qb) = bir(a,b) in
K×/Nr(K[

p
∆]×), we will deduce the following.
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Proposition 1.3. The set ClK(∆) of PSL2(K)-orbits in Q(K2) with non-square discrimi-
nant ∆ embeds into the group K×/NrK(K[

p
∆]×) of exponent two, by sending the class of

the norm x2− ∆
4 y2 of theK-extensionK[

p
∆] to the identity, and using the multiplication

of values for composition.

The motivation was to understand the space Q(Z2) of integral binary quadratic forms
Q(x, y) = l x2+mx y+r y2 up to change of variables by PSL2(Z), and the class groups Cl(∆)
of primitive classes with non-square discriminant∆= m2−4l r ∈Z introduced by Gauss
in [7]. We refer to [3, 5] and [15] for the relevant background and history.

For a field K of characteristic ̸= 2, the extension of scalars Z → K induces a map
Q(Z2) →Q(K2), yielding a group morphism Cl(∆) → ClK(∆). We say that Qa ,Qb ∈Q(Z2)
areK-equivalent when they are conjugate by C ∈ PSL2(K). WhenK⊃Q this implies that
they have the same discriminant (not just modulo (K×)2), and Theorem 1.2 and Propo-
sition 1.3 show that their K-equivalence is measured by bir(Qa ,Qb) ≡Qa(1,0)Qb(1,0) =
la lb ∈K×/Nr(K[

p
∆]×).

Thus, when K = C this groups the PSL2(Z)-classes of Q(Z2) according to their dis-
criminant ∆, and asK decreases we obtain finer partitions of the class groups Cl(∆) into
K-classes. In section 6 we provide a computable characterisation of Q-equivalence in
terms of the Hilbert symbols (δ,χ)p at all primes p ∈Z, which measures the obstruction
to solving the equation x2 −δy2 =χ inQp .

We also deduce from Theorem 1.2 a relation between the partition of Cl(∆) into Q-
classes and its partition into genera, which are given by the cosets Cl(∆)/Cl(∆)2 modulo
the subgroup of squares.

Theorem 1.4. For non-square discriminants, genus equivalence implies Q-equivalence.
If the discriminant is fundamental then genus equivalence is implied byQ-equivalence.

Arithmetic equivalence of singular moduli & modular geodesics. We conclude with
a geometric interpretation of K-equivalence, which one may compare with [11]. The
modular group PSL2(Z) acts on the upper-half plane HP = {z ∈ C | ℑ(z) > 0} by linear
fractional transformations, and the quotient is the modular orbifoldM= PSL2(Z)\HP.

Consider primitive Qa ,Qb ∈Q(Z2) with non-square discriminant∆, and denote (α′,α),
(β′,β) their roots (which one may order up to simultaneous inversion).

If ∆ > 0, then Qa and Qb are uniquely determined by α,β ∈ HP, and their PSL2(Z)-
classes correspond to points [α], [β] ∈M, called singular moduli.

Corollary 1.5. Complex irrationals α,β ∈ Q(
p
∆) are K-equivalent if and only if there

exists a geodesic arc inM from [α] to [β] whose lengthλ is of the form
(

cosh λ
2

)2 = 1
(2x)2−∆y2

for x, y ∈K, in which case all geodesic arcs from [α] to [β] have this property.

If ∆ < 0 then Qa and Qb correspond to the oriented geodesics (α′,α), (β′,β) in HP

and their PSL2(Z)-classes correspond to primitive closed oriented geodesics inM, called
modular geodesics.

Corollary 1.6. Two modular geodesics of the same length 2sinh−1(
p
∆/2) are K-equiva-

lent if and only if one of the following equivalent conditions hold:

θ There exists one intersection point with angle θ ∈ ]0,π[ such that
(

cos θ
2

)2 = 1
(2x)2−∆y2

for x, y ∈K, in which case all intersections have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that
(

cosh λ
2

)2 =
1

(2x)2−∆y2 for x, y ∈K, in which case all such ortho-geodesics have this property.

In conclusion, the Q-equivalence is measured by the geometric quantities
(

cos θ
2

)2

or
(

cosh λ
2

)2 as elements in Q× mod NrQQ(
p
∆), and their multiplication implies a geo-

metric interpretation for the multiplication of genera.
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2. Geometric algebra of gl2(K)

Fix a fieldK of characteristic different from 2 and aK-vector spaceV of dimension 2.

Involutive algebra. The K-algebra gl(V) of linear endomorphisms of V is isomorphic
to V⊗V∗ with product defined by (u ⊗µ) · (v ⊗ν) = u ⊗µ(v)ν. It is endowed with the
canonical linear form Tr: gl(V) →K defined by Tr(u ⊗µ) = µ(u). Let us find a canonical
involution M 7→ M # on gl(V), that is an anti-commutative linear endomorphism of order
two, to deduce a canonical non-degenerate bilinear form (M , N ) 7→ Tr(M N #) isomorphic
to the pairing gl(V)×gl(V)∗ →K.

A non-degenerate bilinear form ω : V ×V → K is equivalent to an isomorphism
ω∗ : V→ V∗. Its associated adjoint involution #: gl(V) → gl(V) is the composition of
(ω∗)⊗(ω∗)−1 : V⊗V∗ →V∗⊗Vwith the canonical map switching factors, thus #: u⊗µ 7→
(ω∗)−1(µ)⊗ω∗(u). Observe that # only depends onω up to scaling. The planeV admits a
unique non-degenerate anti-symmetric bilinear form ω up to scaling as Λ2V∗ ≃K, and
this defines our canonical involution #.

Only after choosing a basis of V do we have the identifications V = K2 and gl(V) =
gl2(K). Then ω(u, v) = det(u, v) and the associated adjoint involution on gl2(K) is the
transpose-comatrix:

M = (
a b
c d

) 7−→ M # = (
d −b−c a

)
.

The fixed subalgebra of M 7→ M # is reduced to the center K1 of gl(V). Composing
(M , M #) with addition or multiplication yields the central elements:

Tr(M)1 := M +M # and det(M)1 := M ×M #

which recovers the linear trace map Tr: gl(V) → K, and defines the multiplicative de-
terminant map det: gl(V) → K. The involution # preserves the group GL(V) of invert-
ible elements, which consists in those A ∈ gl(V) such that det(A) ∈ K×, in which case
A−1 = det(A)−1 A#.

For A ∈ GL(V) and M ∈ gl(V) we have (AM A−1)# = AM # A−1, so the left adjoint linear
action of GL(V) on gl(V) preserves the involution, whence all the structures which will
follow.

The kernel SL(V) of the determinant morphism det: GL(V) → K× is called the sub-
group of units, thus A ∈ SL(V) ⇐⇒ det(A) = 1 ⇐⇒ A# = A−1. The kernel sl(V) of the
trace form is the anti-symmetric part for the involution, thus a ∈ sl(V) ⇐⇒ Tr(a) =
0 ⇐⇒ a# =−a.

Quadratic space. On the vector space gl(V), the determinant defines a non-degenerate
quadratic form, and as det(M+N )1= (M+N )(M+N )# = (

det(M)+Tr(M N #)+det(N )
)
1,

its polar symmetric bilinear form is

〈M , N〉 = tr(M N #) where tr(P ) := 1
2 Tr(P ).

The involution # has eigenvalues ±1 and its eigenspaces provide a decomposition

gl(V) =K1⊕sl(V)

which is orthogonal with respect to the determinant form. Thus every M ∈ gl(V) splits
as the sum of its symmetric and anti-symmetric parts with respect to the involution:

M = tr(M)1+pr(M), where tr(M)1= M+M #

2 and pr(M) := M−M #

2 .

In particular det(M)1= tr(M)21−pr(M)2 which we may write det = tr2−pr2.
The 4-dimensional space gl(V), which contains the isotropic cone gl(V) \ GL(V) de-

fined by det(M) = 〈M , M〉 = 0, decomposes as the direct sum of the anistropic line K1
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and its orthogonal hyperplane sl(V) defined by tr(M) = 〈1, M〉 = 0. Denote by X the
isotropic cone for the determinant restricted to the kernel sl(V) of the trace:

X= {M ∈ gl(V) | 〈1, M〉 = 0 = 〈M , M〉} = {a ∈ sl(V) | det(a) = 0}.

Discriminant. The relation M 2 − (M +M #)M + (M M #) = 0 yields the Cayley–Hamilton
identity χM (M) = 0 for X 2 −Tr(M)X +det(M) ∈ K[X ] the characteristic polynomial of
M . Hence a non-central element M ∈ gl2(K) \K1 generates a commutative subalge-
bra K[M ] = Span(1, M) of dimension 2, which is isomorphic to the quadratic extension
K[X ]/(χM ) ofKwith Galois involution given by the restriction of the involution #.

The discriminant of M ∈ gl(V) is defined as that of its characteristic polynomial,
equal to

disc(M) = Tr(M)2 −4det(M).

In particular disc(A) = Tr(A)2 −4 for A ∈ SL(V) and disc(a) =−4det(a) for a ∈ sl(V).
We call M ∈ gl(V) semi-simple when disc(M) ̸= 0, that is when χM has simple roots

in its splitting field. If these roots belong to K then K[M ] is isomorphic to the direct
product K×K, otherwise K[M ] is a simple K-algebra (no proper ideals). In both cases
K[M ] is a semi-simple K-algebra (a product of simple algebras). When disc(M) = 0 we
have χM (X ) = (X −λ)2 for λ ∈K so the algebra K[M ] is not integral (it has zero divisors)
as M −λ1 is nilpotent.

The discriminant is preserved under the projection disc(M) = disc(pr M), so an ele-
ment is semi-simple if and only if its projection in sl(V) lies outside the cone X.

Projectivisation. In the projective 3-space P(gl(V)), the point P(K1) and the plane
P(sl(V)) are mutually polar with respect the non-degenerate quadric P(gl(V)) \ PGL(V).
The point lies off the quadric and its polar plane intersects the quadric transversely
along the non-degenerate conic P(X). Geometrically, the conic P(X) consists in the set
of tangency points between the quadricP({det = 0}) and the pencil of lines throughP(1).

Figure 1. The quadric P({det = 0}) in P(GL(V)). The point P(1) lies off
the quadric and its polar plane P(sl(V)) intersects the quadric in the
conic P(X).

Over K, the isomorphism types of the quadric P({det = 0}) and of the conic P(X) are
given, in terms of the classes in K×/(K×)2 of the diagonal elements appearing in the
diagonalisation of the quadratic form det, by {1,−1,1,−1} and {−1,1,−1}.

Lemma 2.1 (Equivariant ruling of the quadric). The map Ψ : M 7→ (ker M , im M) de-
fines a bijective algebraic correspondence between the projective quadric P({det = 0}) and
P(V)×P(V) sending the projective conic P(X) to the diagonal P(V). The map Ψ conju-
gates the adjoint action of PGL(V) restricted to P({det = 0}) with its tautological diagonal
action on P(V)×P(V).
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Recall that the action of PGL(V) onP(V) is simply-transitive on triples of distinct lines.
For a symplectic formω onV, we define the Maslov index of such a triple x1, x2, x3 ∈P(V)
as the element ω(x⃗1, x⃗2) ∈K×/(K×)2 where the three vectors x⃗i ∈ xi ⊂V sum up to zero.
The level sets of the Maslov index do not depend on the choice of ω. One may show [13,
Proposition 1.39] that the action of PSL(V) on P(V) is simply-transitive on triples of dis-
tinct lines with a given Maslov index.

3. The Lie algebra sl2(K)

Orthogonality & colinearity. The associative algebra gl(V) inherits the structure of a
Lie algebra by taking (half of) the commutator:

{M , N } = 1
2 (M N −N M)

and as {M , N } = {pr M ,pr N } we may quotient by its center K1 to find a Lie bracket on
sl(V). From a geometric perspective, the kernel sl(V) of the trace form is a 3-dimensional
Lie algebra, that of the Lie group SL(V), kernel of the determinant morphism.

J K

S

J K

S

J K

S

Figure 2. The level surfaces 1,0,−1 of det in sl2(Q).

From now on we will focus on the geometry of sl(V) with the restricted scalar product
〈a,b〉 and Lie bracket {a,b}. For a,b ∈ sl(V), the decomposition ab = tr(ab)1+pr(ab)
rewrites as

ab =−〈a,b〉1+ {a,b}

thus a,b are orthogonal if and only if they anti-commute, in which case {a,b} = ab. The
Jacobi relation implies that {a,b} ⊥ Span(a,b) for all a,b ∈ sl(V). (Following [1, 9], this
yields a geometric interpretation of the Jacobi relation as the orthocenter theorem for
triangles in P(sl(V)).)

The Killing form associated to the bracket is proportional to the scalar product:

− 1
8 Tr

(
c 7→ 2{a,2{b,c}}

)=− tr
(
c 7→ {a, {b,c}}

)=− tr(ab) = tr(ab#) = 〈a,b〉.
The non-degeneracy of the Killing form implies that of the Lie bracket. It also implies
that a,b are colinear if and only if {a,b} = 0. Hence the quantity [a,b,c] := 〈{a,b},c〉 =
1
2 (tr(bac)− tr(abc)) defines a volume form on sl(V), that is an alternate non-degenerate
trilinear form overK.

When a,b ∈ sl(V) are not colinear, they span the plane Span(a,b) = {a,b}⊥. In the
projective plane P(sl(V)) the line through the distinct points P(a),P(b) is polar to the
point P({a,b}) with respect to the conic P(X). Their relative position with respect to
the conic is given by the discriminant disc{a,b} ∈ K/(K×)2 of the quadratic form det
restricted to the plane Span(a,b).
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Figure 3. The projectivisation P : sl2(Q) → QP2 sends an orthogonal
pair (a,a⊥) to a polar pair (here a ∉X so a⊥ is not tangent to X).

a−

b−

{a,b}

a+

b+

b0

a0
a−

b−
{a,b}

a−

b−

{a,b}

Figure 4. In the projective planeP(sl2(Q)) with the conicP(X): various
configurations of the line (P(a),P(b)) and its pole P({a,b}).

Subalgebras & commutants. Enlarges Figures 3 and 4.Elements a,b ∈ sl(V) generate
an associative subalgebra (K[a,b], ·) of (gl(V), ·) and generate a Lie subalgebra (L(a,b), {·, ·})
of (sl(V), {·, ·}). Since the Lie bracket equals half the commutator of the associative prod-
uct, we clearly haveK[a,b] ⊃K1⊕L(a,b).

Proposition 3.1 (Subalgebras). Let a,b ∈ sl(V). In terms of the underlying vector spaces
we haveK[a,b] =K1⊕L(a,b) and L(a,b) = Span(a,b, {a,b}).

There are four possibilities for the isomorphism type of L(a,b) given by the relative
position of a,b, {a,b} with respect to the isotropic cone X⊂ sl(V), as follows.

0. If a = 0 = b, then L(a,b) = {0}.
1. If {a,b} = 0 but det(a) ̸= 0 then L(a,b) is the abelian Lie algebra of dim = 1.
2. If {a,b} ̸= 0 but det{a,b} = 0 then L(a,b) is the affine Lie algebra of dim = 2.
3. If det{a,b} ̸= 0 then L(a,b) = sl(V).

Over every field K of characteristic different from 2, each of these cases can be realised
by choosing a,b appropriately.

The previous Proposition could have been formulated for M , N ∈ gl(V), since they
generate the same associative and Lie algebras as their projections a,b ∈ sl(V).

Proposition 3.2 (Commutants). Consider the adjoint actions of the groups GL(V) and
SL(V) on the space sl(V) and its projectivisation P(sl(V)). Let p ∈ sl(V) \X.

The stabilizer of p under GL(V) is (K[p])×, that is the complement of the degenerate
conic x2 + y2 det(p) = 0 in the planeK[p] = {x1+ y p}.

The stabilizer of p under SL(V) is (K[p])×∩SL(V), that is the conic x2+ y2 det(p) = 1 in
the planeK[p] = {x1+ y p}, which is non-degenerate except when p ∈X.

The stabiliser of P(p) under GL(V) is the Z/2-graded subgroup (K[p])× ⊔ (K[p]⊥)×

formed by the union of the complements of two degenerate conics.
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The stabiliser of P(p) under SL(V) is the Z/2-graded subgroup (K[p] ∩ SL(V)) ⊔
(K[p]⊥ ∩ SL(V)) formed by the union of two non-degenerate conics isomorphic to x2 +
y2 det(p) =±1.

(The conicK[p]⊥∩SL(V) is isomorphic to x2+y2 det(p) =−1 but does not have a priv-
ileged parameterisation and may have noK-points.)

Proof. For C ∈ GL(V), if C pC−1 is proportional to p, then either it equals +p in which
case {prC , p} = 0 and C ∈ K[p], or else it equals −p in which case 〈prC , p〉 = 0 and
prC ∈K[p]⊥. Recall that the quadratic space (gl(V),det) is isomorphic to a sum of two
hyperbolic planes. Hence the restrictions of det to the summands of the decomposition
gl(V) =K[p]⊕K[p]⊥ must have opposite Witt classes, and the former is (1,det(p)) so the
latter is equivalent to (−1,−det(p)). □

We refer to [13, 1.28] for analogous descriptions of the stabilizers of p ∈X\ {0}.

Cosine and cross-ratio. For a ∈ sl(V)\X, choose a square root ofδ :=−det(a) and extend
the scalars to the field K′ = K[

p
δ]. The tautological action of a on the plane K′2 has

two eigendirections for the eigenvalues ±pδ. These lines are mapped by Ψ⊗K′ to the
intersection of the coneX⊗K′ with the orthogonal plane a⊥. We deduce an ordered pair
of points α′,α ∈K′P1.

We may now define and relate the cosine cos(a,b) and cross-ratio bir(a,b) of a,b ∈
sl(V) \X. These equivalent quantities, together with the discriminants disc(a)&disc(b),
are the only PGL(V)-invariants for a pair of elements in sl(V) \X.

Lemma 3.3. For a,b ∈ sl(V) \X, if we choose a square root of det(ab) then we may define
their cosine cos(a,b) ∈K[

p
det(ab)] by

cos(a,b) := 〈a,b〉√
〈a,a〉〈b,b〉

= − 1
2 Tr(ab)p
det(ab)

and we may order their polar points P(a⊥ ∩X) = {α′,α} and P(b⊥ ∩X) = {β′,β} up to
simultaneous inversion, so as to define their cross-ratio bir(a,b) ∈K[

p
det(ab)]:

bir(a,b) := bir(α′,α;β′,β) = (α−α′)(β−β′)
(α−β′)(β−α′)

For a same choice of
p

det(ab), these quantities are related by

1

bir(a,b)
= 1+cos(a,b)

2
.

Remark 3.4. When det(a) = det(b), this common value yields a canonical choice forp
det(ab).

Remark 3.5. For a,b ∈ sl(V) \X: det{a,b} = 0 ⇐⇒ cos(a,b)2 = 1 ⇐⇒ bir(a,b) ∈ {1,∞}.

4. Ptolemy’s theorem for quadrilaterals inscribed in P(X)

Parametrizing the cone. Choose a symplectic form ω on V and consider the associ-
ated quadratic map ψ : V→ gl(V) given by ψ(v) = −v ⊗ω∗(v) = ω(·, v)v . Thus ψ(v) is
nilpotent with image Kv . Consequently, ψ(u)ψ(v) ∈ gl(V) equals −ω(u, v)2 times the
projection on Ku parallel to Kv , whence {ψ(u),ψ(v)} ∈ sl(V) equals −ω(u, v)2 times the
symmetry with respectKu parallel toKv .

A symplectic basis of (V,ω) is a pair (u, v) ∈ V×V such that ω(u, v) = 1. Denote by
Su,v ∈ GL(V) the unique element of order 4 sending u to v , and by Hω ⊂ SL(V)∩ sl(V)
the set of such Su,v . Let Xω be the set of elements p ∈X such that there exists Su,v ∈Hω
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Figure 5. Angle at intersection 1
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Figure 6. The quadratic map ψ : Q2 → X, and the isomorphism
P(ψ) : P(Q2) → P(X) of projective lines. Consult [13, Chapter 2] for
details about this construction.

for which the scalar product 〈p,Su,v 〉 is a sum of squares x2 + y2 of elements x, y ∈K (in
which case this is true for all Su,v ∈Hω).

Lemma 4.1. The quadratic map ψ : V→ X has image Xω and is two-to-one outside the
origin. It intertwines the tautological action of SL(V) on V with the restriction of its ad-
joint action on Xω. For all u, v ∈Vwe have 2〈ψ(u),ψ(v)〉 =ω(u, v)2.

We have P(Xω) = P(X) and the map P(ψ) : P(V) = P(Xω) is an isomorphism of projec-
tive lines, inverse to the restriction ofΨ to P(X). For distinct u, v, x, y ∈Xω we have:

(CRS) bir(u, v, x, y)2 = 〈u, v〉 · 〈x, y〉
〈u, y〉 · 〈x, v〉 .

Proof. One may show that ψ(V) = Xω and P(Xω) = P(X) by computing in a symplectic
basis of V. The last equality equals the cross-ratio of the four lines in V generated by
preimages of u, v, x, y , computed in terms of the area form, as in the image below. □

x⃗ v⃗ y⃗ u⃗

O

X Y

X V
= ω(⃗x, y⃗)

ω(⃗x, v⃗)

UV

U Y
= ω(u⃗, v⃗)

ω(u⃗, y⃗)



32 Christopher-Lloyd Simon

Ptolemy’s theorem for ideal quadrilatareals. We now apply the previous lemma to show
the following analogue of Ptolemy’s theorem for quadrilaterals inscribed in the projec-
tive conic P(X), which appeared in [10, Proposition 2.6]. It is better formulated if we fix
a symplectic form ω on V and consider vectors in the subset Xω of the isotropic cone X.
Since P(Xω) = P(X) we may always lift a quadrilateral to such a quadruple, and any lift
will satisfy the identity.

Proposition 4.2. For distinct u, v, x, y ∈ Xω, the following identity holds in a quadratic
extention ofK:

(IPS)
√〈u, v〉 · 〈x, y〉 =√〈u, y〉 · 〈x, v〉+√〈u, x〉 · 〈v, y〉.

This formula is invariant under the action of (K×)2 by individual dilatation of u, v, x, y ,
so we may suppose they lie on a conic section {p ∈Xω | 〈Su,v , p〉 = 1}.

Proof. This identity is equivalent, after dividing by the left-hand side, to:√
〈u, v〉 · 〈x, y〉
〈u, y〉 · 〈x, v〉 +

√
〈u, v〉 · 〈x, y〉
〈u, x〉 · 〈v, y〉 = 1.

But this follows from the identity in the previous Lemma 4.1 and the addition rule of
cross-ratios bir(u, v, x, y)−1 +bir(u, v, y, x)−1 = 1. □

5. The adjoint actions of PGL2(K) and PSL2(K) on P(sl2(K))

The isomorphism PGL(V) → SO(sl(V), det). The left adjoint linear action of GL(V) on
gl(V) preserves the involution whence every structure which derives from it, such as the
determinant form and the orthogonal decomposition K1⊕ sl(V). It also preserves the
orientations of sl(V) defined for a basis as the class of its determinant inK×/(K×)2. Only
the scalar matrices act trivially, and the maximal subspace on which the action is trivial
equals K1. Therefore no information is lost after quotienting by these centers, and this
yields a faithful representation PGL(V) → SO(sl(V),det) into the group of orientation
preserving isometries of (sl(V),det).

Proposition 5.1. The adjoint action yields an isomorphism PGL(V) ≃ SO(sl(V),det).

Proof. To prove surjectivity, we use a theorem of Cartan–Dieudonné [6] stating that
every isometry of a symmetric non-degenerate bilinear form over a d-dimensional
K-vector space is a product of at most d reflections. In particular, an element of
SO(sl2(K),det) is a product of at most 3 reflections, but since it has determinant 1 it
is in fact a product of exactly two reflections. Thus we must express all products of two
reflections as the conjugacy by some element.

If q ∈ gl(V) is not isotropic, that is det(q) ̸= 0, then the orthogonal reflection σq ∈
End(gl(V)) of vector q across q⊥ is given by

σq (m) = m −2 〈q,m〉
〈q,q〉 ·q.

Notice that the orthogonal reflection of vector 1 across sl(V) equals σ1 : m 7→ −m#. The
endomorphism µq ∈ End(gl(V)) corresponding to left multiplication by q , left conju-
gates σ1 to σq . In formulae, we have µq : m 7→ qm and σq =µq ◦σ1 ◦µq−1 . Thus

σq (m) =−q(q−1m)# =− qm#q
det(q) .

Now restricting the attention to End(sl(V)), we notice that for q,m ∈ sl(V) this for-
mula becomes σq (m) = −qmq−1. Hence for p, q ∈ sl(V) \X the reflection σp ◦σq ∈
SO(sl(V),det) coincides with the left adjoint action of pq ∈ GL(V). □
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The adjoint action commutes with the projectivisation map sl(V) →P(sl(V)). This re-
alizes PGL(V) as a subgroup inside the automorphism group PGL(sl(V)) of the projective
plane P(sl(V)), namely the stabiliser of the non-degenerate conic P(X).

The description of the actions of PGL(V) and PSL(V) on P(X) follow from Lemma 2.1.

Symmetric space of PGL(V). We call symmetry of PGL(V) an element of order two (since
it maps to an orthogonal symmetry in SO(sl(V),det)). Those are represented by the ele-
ments in GL(V)∩sl(V) = sl(V) \X, so the symmetries of PGL(V) correspond by the pro-
jectivisation map to the complement P(sl(V)\X) of the projective conic. This is an open
projective variety whose irreducible components over K are indexed by the values of
det : GL(V)∩ sl(V) →K×/(K×)2. We call this variety P(sl(V) \X) the symmetric space of
PGL(V), in the spirit of [2].

Hence the group PGL(V) acts on its symmetric space P(sl(V) \X) by the projectivised
adjoint representation, and the elements of order two are the symmetries. Since s ∈
GL(V)∩sl(V) maps to an element of order two in SO(sl(V),det) which fixes the line Ks,
it acts like minus the identity on the orthogonal plane s⊥, thus corresponding to the
orthogonal symmetry across the lineKs:

∀x ∈ sl(V) : sxs−1 +x = 2 〈s,x〉
〈s,s〉 · s

and we recognise from the proof of Proposition 5.1 the expression for the composition
of reflections σs ◦σ1 ∈ SO(gl(V),det) restricted to sl(V).

Action of PGL(V) on P(sl(V) \X). Let us begin with another corollary to Lemma 4.1,
which describes the adjoint action of an element C ∈ PSL(V) on sl(V).

Corollary 5.2. For C ∈ SL(V), the adjoint action of C on sl(V) restricted to the plane
(prC )⊥ is equivalent overK to the tautological action of C 2 on V.

Proposition 5.3. Consider distinct a,b ∈ sl(V) with determinant d ̸= 0 and bir(a,b) ̸=∞.
The quadratic subalgebra K[{a,b}] of gl(V) contains a unique M ∈ GL(V) with Tr(M) = 2
which conjugates a to b. It is given by

M = 1+ bir(a,b)

2d
· {a,b} = (d +〈a,b〉)1+ {a,b}

d +〈a,b〉 and det(M) = bir(a,b).

Proof. First suppose d = 1, so a,b ∈ H. For x ∈ K, set M = 1+ x{a,b}. Then we have
Ma= bM ⇐⇒ a+x{a,b}a= b+xb{a,b}. But {a,b}a= 1

2 (aba+b), and since a ∈H acts like a
symmetry acrossKa, we have aba=−aba−1 = b−2〈a,b〉a so {a,b}a= b−〈a,b〉a. Similarly
b{a,b} = a−〈a,b〉b. Thus Ma= bM ⇐⇒ (a−b)(1− x(1+〈a,b〉)) = 0 ⇐⇒ 1 = x(1+〈a,b〉)
since a−b ̸= 0.

Now suppose a,b ∈ sl(V) have the same determinant d ̸= 0. Divide them by
p

d ,
which may live in a quadratic extensionK′ ofK, to get a′,b′ ∈H as before with bir(a,b) =
bir(a′,b′). Since {a,b}/d = {a′,b′} we haveK′[{a,b}] =K′[{a′,b′}], and for M ∈K′[{a,b}]× an
invertible element of this quadratic algebra, we have Ma = bM ⇐⇒ Ma′ = b′M which
completes the proof. □

Corollary 5.4. The group PGL(V) acts transitively on each level set of the determinant in
sl(V)\X, and therefore on each irreducible component of its symmetric space P(sl(V)\X).
The semi-simple conjugacy classes in PGL(V) are classified by the value of (Tr A)2/disc(A)
∈K, which is 0 for the class of involutions.

Recall that if det(a) ̸= 0 then the stabiliser of a ∈ sl2(K) \X in gl2(K) is reduced to the
quadratic subalgebra K[a]. This implies the following Corollary, which will have arith-
metic applications bearing to the genus of quadratic forms.
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ab

{a,b}

{a,b}

a

b

Figure 7. The one parameter group generated by {a,b}, which is con-
tained in Span(1, {a,b}), acts by translation along the line (a,b).

Corollary 5.5. Slightly reduced Figure 7. Consider distinct a,b ∈ sl(V) with determinant
−δ ̸= 0 and bir(a,b) ̸=∞.

The matrices M ∈ PGL2(V) conjugating a to b have a well defined determinant in the
quotientK×/NrK(K[

p
δ]×), and it is equal to the class of bir(a,b).

Let us now describe the structure of the orbits for the adjoint action of PSL(V) on the
non-zero level sets {det =−δ} ⊂ sl(V), which is the main theorem in [13, Chapter 1].

Theorem 5.6. Let a,b ∈ sl(V) have det =−δ ̸= 0 and bir(a,b) = 4χ ∉ {1,∞}. The elements
C ∈ SL(V) such that CaC−1 = b are parametrized by the Pell–Fermat conic:

(x, y) ∈K×K : x2 −δy2 =χ
C (x, y) = x(1+ba−1)+ y(a+b).

In particular, a and b are conjugate by some C (x, y) ∈ SL(V) if and only if bir(a,b)
belongs to the subgroup of norms NrKK[

p
δ] ⊂ K× of the quadratic extension, and by

some C (x,0) ∈ SL(V)∩K[{a,b}] if and only if bir(a,b) belongs to the subgroup of squares
(K×)2 ⊂K×.

Proof. Suppose first that a,b ∈ H. Since det{a,b} ̸= 0 the elements 1,a,b, {a,b} form a
basis of gl(V). Let C ∈ gl(V) be decomposed as C = t1+ x{a,b}+ ya+ zb for t , x, y, z ∈K.
The condition Ca= bC can be rewritten using a2 =−1= b2 as well as {a,b}a= b−〈a,b〉a
and b{a,b} = a−〈a,b〉b. After grouping terms we find Ca= bC ⇐⇒ (t −x(1+〈a,b〉)) ·(a−
b)+(z−y)·(1+ba) = 0. But a−b ∈ Span(a,b)\{0} and 1+ba= (1−〈a,b〉)1−{a,b} ∈K[{a,b}]\
{0} so by orthogonality of the planes K[{a,b}] and Span(a,b) we have Ca = bC ⇐⇒ t =
x(1+〈a,b〉) & y = z.

Now for x, y ∈ K the determinant of C = x(1−ba)+ y(a+b) can be computed using
the orthogonality of Span(1,ab) and Span(a,b) and the hypothesis a,b ∈H:

det(C ) = (x2 + y2) · (2+2〈a,b〉) = 4(x2+y2)
bir(a,b)

so C ∈ SL(V) ⇐⇒ bir(a,b) = (2x)2 + (2y)2. This proves the lemma for δ=−1.
Finally, let us reduce the general case δ ̸= 0 to the previous one. The points a′ = a/

p
d

and b′ = b/
p

d satisfy bir(a,b) = bir(a′,b′) and the endomorphisms C ∈ SL(V⊗K′) with
K′ =K[

p
d ] conjugating a to b are the same as those conjugating a′ to b′. We just showed

that those elements C correspond to the pairs (x, y) ∈K′×K′ such that bir(a,b) = 4(x ′2 +
y ′2) by the formula C = x ′(1+ b′a′−1)+ y ′(a′ + b′). Setting x = x ′ and y = y ′ 1p

d
which

satisfy 4(x2 +d y2) = bir(a,b), we may rewrite C = x(1+ba−1)+ y(a+b). But recall that a
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and b have coefficientsK and that a+b ̸= 0 is orthogonal to 1+ba−1 ̸= 0. Hence C is has
coefficients inK if and only if x, y ∈K. □

Remark 5.7. Theorem 5.6 holds with coefficients restricted to any subring ofK containing
1/2. For instance Z[1/2] ⊂Q, or Zp ⊂Qp for odd prime p.

Remark 5.8. The problem of conjugating a,b ∈ sl(V) \X by C ∈ SL(V) can be formulated
as the search for fixed points under the transformation C 7→ aCb−1. Let us be more precise.

The group gl(V)××gl(V)× acts linearly on gl(V) by (A,B) ·C = AC B−1, preserving the
isotropic cone {det = 0} and its complement gl(V)×. The C ∈ gl(V)× conjugating A,B ∈
gl(V)× correspond to the fixed points of (A,B) under this action. If they exist, then (A,B)
must belong to the subgroup of pairs with det(A) = det(B), preserving the level sets of det,
namely the stabiliser of SL(V).

The proof of Theorem 5.6 can be recast as the description of the linear action of (a,b)
on gl(V), which under the assumptions det(a) =−δ= det(b) and 〈a,b〉 = κ ̸= ±δ ensuring
that (1, {a,b},a,b) forms a basis, is given by the following matrix, where c = −κ/δ is the
cosine:

La =
(0 0 δ −κ

0 0 0 1
1 κ 0 0
0 δ 0 0

)
, Rb−1 = 1

δ

(0 0 −κ δ
0 0 1 0
0 δ 0 0
1 κ 0 0

)
, LaRb−1 = 1

δ

(
−κ δ2−κ2 0 0
1 κ 0 0
0 0 0 δ
0 0 δ 0

)
=

(
c (1−c2)δ 0 0

1/δ −c 0 0
0 0 0 1
0 0 1 0

)
.

Its characteristic polynomial is (X 2 +1)2 = (X −1)2(X +1)2 and some eigenvectors for the
eigenvalues +1 and −1 are C (x, y)# = (x(1+ c), x/δ,−y,−y) and (x(1+ c),−x/δ, y,−y).

Remark 5.9. We have TrC (x, y) = 2x(1−〈b,a〉/δ) = 2x(1+cos(a,b)) = 4x/bir(a,b) = x/χ.

Remark 5.10 (Square roots of ba−1). For y = 0 we recover the unique multiples of M satis-
fying the conditions in Proposition 5.3 which belong to SL(V ⊗ K′) where
K′ =K[

√
bir(a,b)], namely:

±C = 1
2

√
bir(a,b)

(
1+ba−1) .

These are the unique square roots of the product of symmetries ba−1 in the extended
quadratic algebraK′[{a,b}] since one may compute that −δC 2 = 〈a,b〉+ {a,b} =−ba, thus

C 2 = ba−1.

Our last proposition completes the description for the PSL(V)-orbits of pairs a,b ∈
sl(V)\X. Two such pairs are conjugate if and only if the obvious conditions on the scalar
products hold, together with the Pell–Fermat conditions on the cross ratios given by
Theorem 5.6.

Proposition 5.11. The stabiliser SL(V)∩K[a] of a ∈ sl(V) \X acts transitively on the set of
elements in sl(V) with a given determinant and scalar product with a.

Proof. For C = t1+ua ∈ SL(V) and b,b′ ∈ sl(V), we have C b = b′C if and only if 〈a,b〉 =
〈a,b′〉 & t (b−b′)+u{a,b+b′} = 0. This last condition amounts to the colinearity of (b−b′)
with {a,b+b′}, that is (b−b′) ⊥ a & (b−b′) ⊥ (b+b′), so the claim follows. (If b ̸= a then
±C is unique.) □

Consider the action of PSL(V) by conjugacy on itself. Let us say that A,B ∈ PSL(V) are
of the same type if disc(A) ≡ disc(B) mod (K×)2, in which case we may define bir(A,B).

Corollary 5.12. A pair of semi-simple elements A1, A2 of the same type is conjugate to an-
other pair of semi-simple elements B1,B2 of the same type if and only if we have
bir(A1, A2) = bir(B1,B2) as well as disc(Ai ) =∆i = disc(Bi ) and

bir(Ai ,Bi ) ≡ 1 mod NrKK(
√
∆i )×.
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Examples over finite Fields. Let us fix a basis ofV to identify it withK2, and first deduce
a canonical basis for gl(V) = gl2(K). Its elements together with their opposites forms
the dihedral group of order 8 which acts faithfully on the square whose vertices have
coordinates ±1:

1= (
1 0
0 1

)
S = (

0 −1
1 0

)
J = (

0 1
1 0

)
K = (−1 0

0 1

)
.

This orthogonal basis presents gl2(K) as a quaternion algebra, with product given by
J 2 = K 2 = 1 and K J =−JK = S. Its elements are defined over allK since their coordinates
belong to {−1,0,1}, in particular their properties are invariant under extension of scalars.

Example 5.13 (Conjugating elements with their opposites). The pairs (K , J ) and (−K ,−J )
are conjugate by S ∈ SL2(K). The elements S and −S are conjugate by K , J ∈ GL2(K) but
according to Proposition 3.2, they are conjugate in SL2(K) if and only if −1 is a sum of
squares inK.

Example 5.14 (Conjugating J and K ). Let us show that J and K are conjugate by SL2(K)
but are conjugate byK[{J ,K }] only when 2 ∈ (K×)2.

The M ∈ gl2(K) satisfying M J = K M are M(p, q) = (p −p
q q

)
for p, q ∈ K, and det(M) =

2pq. The only ones inK[{J ,K }] =K[S] are those for which p = q.
Applying Theorem 5.3 to J ,K of determinant −1 with 〈J ,K 〉 = 0 and {J ,K } =−S yields

C (x, y) = 1p
2pq

M(p, q) = 1p
2pq

[ p+q
2 (1+S)+ q−p

2 (J +K )
] ∈ SL2(K[

√
2pq]).

Therefore J and K are always conjugate by SL2(K) by choosing for instance p = 2q, but
they are conjugate inK[{J ,K }] only when 2 ∈ (K×)2.

Example 5.15. Let us describe the orbits for the adjoint action of PSL2(F3) on the non-zero
level sets of (sl2(F3),det), given by 1: {±S,±(J ±K )} and −1: {±J ,±K ,±S ± J ±K }.

For a,b ∈ sl2(F3) with det =−δ ̸= 0, the hypothesis bir(a,b) ∉ {1,∞} ⇐⇒ cos(a,b)2 ̸= 1
becomes 〈a,b〉 = 0, and leads to the equation x2 −δy2 =−1 which always has a solution.
Hence Theorem 5.6 says that any two orthogonal elements of the same non-zero determi-
nant are conjugate.

We find for instance that S is conjugated to J +K by the element 1+S −K . Moreover
as −1 is a sum of squares in F3 we know that S and −S are conjugate, for instance by
J +K ∈ SL(V). From this we deduce that the level set 1 consists of a single orbit with 6
elements.

The quaternionic group ±{1,S, J ,K } assembles the elements ±S ± J ±K in two orbits
given by the product of their coefficients mod 3. Moreover we saw that J ,−J ,K ,−K are all
conjugate. An exhaustive search confirms that the 12 element level set {det = −1} is par-
titioned into those 3 orbits with 4 elements, of which two form the vertices of tetrahedra
whose edges intersect along the third forming the vertices of a square. Using Proposi-
tion 5.11, we find that the action of PSL2(F3) on this picture recovers the isomorphism
with the tetrahedral group △(2,3,3) ≃A4.

One may also partition X \ {0} in two orbits forming the vertices of tetrahedra, whose
edges correspond to level sets of the scalar product.

Example 5.16. In sl2(F5) the level sets of det for the values 1,2 are given in the following
table. Multiplication by 2 yields a bijection between level sets with opposite signs, and the
25 remaining elements belong toX. Both forms x2+y2 and x2+2y2 represent all elements
in F5, and one may use Theorem 5.6 to show that the action of PSL2(F5) is transitive on
each non-zero level set of det.

The orbits {det =±2} form the vertices of two octahedra whose edges correspond to the
orbits {det = ±1}, and Proposition 5.11 shows that the action of PSL2(F5) on this picture
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Figure 8. Inside sl2(F3): the isotropic cone X, the orbit {det =+1} and
the partition of {det =−1} into 3 orbits: the vertices of each tetrahedron
and the intersections of their edges. Inside sl2(F5): the orbits det = −2,
−1, 1, 2 and an icosahedral orbit in X\ {0}.

det {kK + sS + j J | k, s, j ∈ [−2,2]} ⊂ sl2(F5) Cardinal
0 2(±K ±S), ±K ±2J , ±S ± J , 0, 2(±K ±S, ±2K ± J , 2(±S ± J ) 12+1+12
1 ±S, ±2K , ±2J , ±K ±S ±2J , ±2K ±S ± J , ±2K ±2S ±2J 30
2 ±2K ±S, ±S ±2J , ±2J ±2K , ±J ±2S ±K 20

recovers the isomorphism with the icosahedral group △(2,3,5) ≃A5. The set X \ {0} par-
titions in two orbits forming the vertices of icosahedra, whose edges can be defined using
level sets of the scalar product.

6. Applications to binary quadratic forms

Let Q(V) be the space of quadratic forms Q : V→K. After choosing a basis ofV, those
amount to homogeneous polynomials in two ordered variables with coefficients inK.

Isomorphism Q(V) ≃ sl(V). One may polarise Q ∈ Q(V) with respect to any non-de-
generate bilinear form on the plane V, and one usually learns this for some euclidean
scalar product, but we may also use a symplectic form: there exists a unique q ∈ sl(V)
such that Q(v) =ω(v,qv). If we fix a basis V=K2 and ω= det we have the formula

Q = l x2 +mx y + r y2 ∈Q(K2) ←→ q= 1
2

(−m −2r
2l m

)
∈ sl2(K).

This defines a bijective correspondence between sl2(K) and Q(K2) through which the
adjoint action of PGL2(K) corresponds to the action by change of variables. It matches
the discriminants m2 −4l r and sends the Lie bracket {a,b} = 1

2 (ab−ba) of sl2(K) to the
Poisson bracket of functions on K2, under which quadratic forms are closed {Qa ,Qb} =
1
4

[
(∂xQa)(∂yQb)− (∂xQb)(∂yQa)

]= {a,b}.
Consequently, all the notions defined for an element q ∈ sl2(K) or a pair of elements

a,b ∈ sl2(K), can be translated in terms of the corresponding binary quadratic forms
Q,Qa ,Qb ∈Q(K2). For instance, after choosing a root

√
disc(Qa)disc(Qb) =−4

p
det(ab),

we may define the cosine:

cos(Qa ,Qb) = disc(Qa +Qb)− (disc(Qa)+disc(Qb))

2
√

disc(Qa)disc(Qb)
= cos(a,b)

and the cross-ratio of their roots {α′,α}&{β′,β}, which are ordered up to simultaneous
inversion:

bir(Qa ,Qb) = bir(α′,α;β′,β) = (α′−α)(β′−β)

(α−β′)(β−α′)
= bir(a,b).
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For a common choice of root these are related by

bir(Qa ,Qb)−1 = 1
2

(
1+cos(Qa ,Qb)

)
.

In particular, if Qa ,Qb have the same discriminant ∆, which is to be chosen as the root√
disc(Qa)disc(Qb), then bir(Qa ,Qb)−1 = disc(Qa + Qb)/(4∆), and we may compute

bir(Qa ,Qb) ≡ la lb mod NrKK[
p
∆].

The actions by change of variable of PGL2(K) and PSL2(K) on Q(V) preserve the dis-
criminant as an element of K/(K∗)2 and K respectively, as well as the cross ratio. Note
that the condition bir(Qa ,Qb) ∉ {1,∞} ⇐⇒ Qa ̸= ±Qb can always be achieved after con-
jugating Qb by PSL2(K). Consequently, Proposition 5.3 and Theorem 5.6 describe the
orbits of Q(V) under the action of PGL2(K) and PSL2(K) in terms of disc and bir, the
latter being empty orK[

p
∆]×-torsors.

The variables live in the cone. Conversely one may try to recover some notions defined
for binary quadratic form in terms of the corresponding matrices. This was the motiva-
tion leading to Lemma 4.1, namely to recover the values that a form Q ∈Q(V) takes onV
in terms of the geometry of q ∈ sl(V) with respect to X. Indeed, Lemma 4.1 implies that
if ψ : v ∈V 7→ p ∈X then

Q(v) = det(v,qv) = 〈q, p〉.
So the elements p ∈X in the cone play the role of the vector of variables v ∈V, whereas
the other elements q ∈ sl(V)\X are the non-degenerate binary quadratic forms Q ∈Q(V).

The values of Q on V may xthus be interpreted in terms of the distances between q⊥

and X. In particular, if discQa = ∆ = discQb then for any va , vb ∈ V which belong to
K-bases, we have:

bir(Qa ,Qb) ≡Qa(va)Qb(vb) mod NrKK[
p
∆]×

whence bir(a,b) ≡ 〈a, pa〉〈b, pb〉 mod NrKK[
p
∆]×.

Proposition 6.1. The set ClK(∆) of PSL2(K)-orbits in Q(V) with non-square discriminant
∆ embeds into the group K×/NrK(K[

p
∆]×) of exponent two, by sending the class of the

norm x2 − ∆
4 y2 of the K-extension K[

p
∆] to the identity, and using the multiplication of

values for composition.

DescribingQ-equivalence with Hilbert symbols. In this paragraph we fix V=Q2 and a
non-square discriminant ∆. Consider two forms Qa ,Qb representing variable Q-classes
in ClQ(∆), and let us provide a method for computing bir(Qa ,Qb) mod NrQQ[

p
∆]×.

P = {−1,2}∪ {3,5,7 . . . } denotes the set of rational primes and Qp the p-adic comple-
tion of Q. The prime −1 refers (following Conway [4]) to the place at which the comple-
tion ofQ is the Archimedian fieldQ−1 =R. For δ,χ ∈Q×

p the Hilbert symbol
(
δ,χ

)
p equals

1 or −1 according to whether the homogenised Pell–Fermat equation x2−δy2 =χz2 ad-
mits a solution inQpP

2 or not. Thus we have (δ,χ)p = 1 if and only if χ is the norm of an

element inQp (
p
δ).

We define the set of prime obstructions to solving (2x)2 −∆y2 = bir(Qa ,Qb) by

P (Qa ,Qb) = {
p ∈P

∣∣(∆,bir(Qa ,Qb)
)

p =−1
}
,

which only depends on theQ-classes of Qa and Qb .

Theorem 6.2. The forms Qa and Qb areQ-equivalent if and only if P (Qa ,Qb) =;.

Proof. Apply the Hasse–Minkowski theorem [12, Chapitre IV, Théorème 8] to the ternary
quadratic form (2x)2 −∆y2 −bir(Qa ,Qb)z2: it represents 0 over Q if and only if it repre-
sents 0 overQp for all p ∈P . □
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The following lemma and remark enable us to turn the previous theorem into a finite
method for computingQ-classes.

Lemma 6.3. If p ∈P \ {2} divides δ and χ to even powers, then (δ,χ)p = 1.
In other terms P (Qa ,Qb) \ {2} is contained in the set of primes appearing with odd

valuations in the factorisation of ∆ or bir(Qa ,Qb). In particular it is finite.

Proof. A pedestrian method is to reduce the equation mod p, argue that there exists a
solution by a counting procedure, and lift it toQp using Hensel’s lemma.

Alternatively, one may use the explicit formulae [12, Theorem III.1] for the Hilbert
symbol at p ̸= 2 in terms of the Legendre symbols of δ,χ ∈Qp at −1 and p. □

Remark 6.4. Hilbert proved a global relation among the local symbols:
∏

p∈P (δ,χ)p = 1,
which is a reformulation of the quadratic reciprocity law. Consequently P (Qa ,Qb) \ {2}
determines P (Qa ,Qb).

Our final Proposition implies that Qa&Qb areQ-equivalent if and only if P (Q0,Qa) =
P (Q0,Qb). This simplifies the determination of all sets P (Qa ,Qb) to those involving a
fixed element Q0.

Proposition 6.5. For Qa ,Qb ,Qc ∈ ClQ(∆) the set P (Qa ,Qb) is equal to the symmetric dif-
ference of P (Qc ,Qa) and P (Qb ,Qc ). In other terms for all p ∈P we have:(

∆,bir(Qc ,Qa)bir(Qa ,Qb)bir(Qb ,Qc )
)

p = 1.

Proof. According to [12, Theorem III.2], the Hilbert symbol of Qp defines a non-degen-
erate symmetric bilinear form on the F2-vector space (Q×

p )/(Q×
p )2. The lemma can thus

be reformulated as (∆,χa,b,c )p = 1 where χa,b,c = bir(Qc ,Qa)bir(Qa ,Qb)bir(Qb ,Qc ).
We must therefore compare χa,b,c ∈Q× with the subgroup generated by the norms of

elements inQ(
p
∆)×. Using the explicit formula for the cross-ratio we find that

bir(Qa ,Qb) = −∆/(la lb )
Nr∆(α′−β) , hence χa,b,c = −∆3/(la lb lc )2

Nr∆((γ′−α)(α′−β)(β′−γ)) .

Consequently (∆,χa,b,c ) = (∆,−∆)p = 1 as desired. □

Corollary 6.6. Denoting Q0 a representative for the norm of the Q-extension Q(
p
∆), the

map Q 7→P (Q0,Q) yields an isomorphism ClQ(∆) =∏
p∈P ClQp (∆).

Integral binary quadratic forms. Notice that under the 1:1 correspondence Q(Q2) ↔
sl2(Q), the lattice Q(Z2) of integral binary quadratic forms gets mapped to the dual lat-
tice sl2(Z)∨ of sl2(Z) in sl2(Q) with respect to the quadratic form det. We will concentrate
on the primitive points of the lattices Q(V) or sl(V)∨, namely those which are visible
from the origin, thus not multiples of another lattice point by a non-invertible integer.

Now for any field K of characteristic different from 2, we may consider the extension
of scalars sl2(Z[1/2]) → sl2(K), and its restriction to sl2(Z)∨. We say that a,b ∈ sl2(Z)∨

areK-equivalent when their images in sl2(K) belong to the same orbit under the adjoint
action of PSL2(K). We may thus group the conjugacy classes of PSL2(Z) into K-classes,
and observe how this varies withK.

When K⊃Q has characteristic zero, the extension of scalars sl2(Q) → sl2(K) is injec-
tive so theK-equivalence implies the equality of discriminants. WhenK=C, this groups
the integral binary quadratic forms according to their discriminant, and we find the fi-
nite class groups Cl(∆). When K=Q, this defines for each discriminant ∆ a partition of
the class group Cl(∆) intoQ-classes.
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Class groups and genera. Fix a non-square discriminant ∆ and consider the set Cl(∆)
of PSL2(Z)-equivalence classes of primitive integral binary quadratic forms with that
discriminant. This is a finite set by the classical reduction theory of binary quadratic
forms (see [5, 4]).

In [7], C. F. Gauss endowed Cl(∆) with the structure of a finite abelian group which was
later reformulated by Dirichlet as follows [15]. One may represent two classes in Cl(∆) by
forms Qa and Qb whose first coefficients la and lb are coprime, and with the same mid-
dle coefficient m: their composition Qc of the same discriminant is determined by its
first coefficient lc = la lb and middle coefficient m. (Beware that this corresponds to the
narrow class group of ideals in O∆.) The neutral element of Cl(∆) is represented by any
form which takes the value 1, for instance the principal form x2+ϵx y + 1

4 (ϵ−∆)y2 where

ϵ ∈ {0,1} satisfies ∆ = ϵ mod 4, obtained from the Q-extension Q(
p
∆) by restricting the

norm to its unique order O∆ of discriminant ∆.
Two classes in Cl(∆) belong to the same genus when for all p ∈ P they are conjugate

by SL2(Zp ), with Z−1 = R (see [3, Chapter 14]). One may consult [5, Theorem 3.21] for
several other characterisations, such as representing the same values in (Z/∆)×. The
equivalence classes for this relation form a group Gen(∆) given by the multiplication of
their sets of values in (Z/∆)×. Gauss identified it with the quotient of his class group
by the subgroup of squares. Moreover the kernel of the squaring map consists in the
subgroup Sym(∆) of classes invariant by the Galois involution. In other terms we have a
short exact sequence of abelian groups:

1 → Sym(∆) → Cl(∆)
square−−−−→ Cl(∆) → Gen(∆) → 1.

For two classes in Cl(∆) represented by Qa ,Qb we saw that bir(Qa ,Qb) ≡ la lb mod
NrQQ[

p
∆]×. We used this multiplication of values to define the composition law on

ClQ(∆) in Proposition 6.1. Hence the extension of scalars Z→ Q yields a group mor-
phism Cl(∆) → ClQ(∆) whose kernel consists in the Z-classes which are Q-equivalent to
the principal form. This kernel contains the subgroup of squares so we find a morphism
of groups with exponent two Cl(∆)/Cl(∆)2 → ClQ(∆).

A fundamental discriminant∆ is that of (the ring of integers in) a quadratic extension
of Q, which means that ∆ = 1 mod 4 is a square-free integer, or that ∆/4 ̸= 1 mod 4 is
a square-free integer. For such ∆, the genus equivalence amounts to being conjugate
by an element in PGL2(Q) ([5, Exercise 3.17]), which is implied by Q-equivalence. This
discussion implies the following.

Proposition 6.7. In Cl(∆), the principal principal genus Cl(∆)2 is contained in the sub-
group of classes which areQ-equivalent to the principal form, thus genus equivalence im-
plies Q-equivalence. If ∆ is fundamental then Q-equivalence implies genus equivalence
(but otherwise it may not).

Example: Q-equivalence and continued fractions. Let us observe the partition of Cl(∆)
=Z/4×Z/2 intoQ-classes for the positive fundamental discriminants 1596 = 4×3×7×19
and 1768 = 8×13×17, whose fundamental units have norm +1 and −1.

The following tables exhibit the structure of Cl(∆) ≃Z/4×Z/2. Each cell contains the
coefficients (l ,m,r ) of a representative ∈ Q(Z2) together with the period of the contin-
ued fraction expansion of its first root 1

2l (−m +p
∆) and the set of prime obstructions

P (Q0,Q).

Remark 6.8. Notice that Q-equivalence does not control the period lengths of the con-
tinued fraction expansions: there exist Q-equivalent forms whose roots have euclidean
periods of different length.
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(1,−38,−38) (10,−34,−11) (25,−14,−14) (10,−26,−23)
[38,1] [3,1,2,3] [1,12,1,1] [3,3,2,1]
; {7,19} ; {7,19}

(2,−38,−19) (5,−34,−22) (29,−30,−6) (5,−36,−15)
[19,2] [7,2,2,1] [1,4,1,5] [7,1,1,2]
{3,19} {3,7} {3,19} {3,7}

(1,42,−1) (14,40,−3) (−9,34,17) (−3,40,14)
[42,42] [2,13,1,2,13,1] [2,4,4,2,4,4] [2,1,13,2,1,13]

; {2,17} ; {2,17}
(21,40,−2) (7,40,−6) (−13,26,21) (−6,40,7)

[1,1,20,1,1,20] [1,5,6,1,5,6] [2,16,2,16] [6,5,1,6,5,1]
{2,13} {2,17} {2,13} {2,17}

Examples: Q-classes modulo genera. We may apply the previous methods to partition
Cl(∆) intoQ-classes (given by SL2(Qp )-equivalence) using the Hilbert symbols, and into
genera (given by SL2(Zp )-equivalence) using the Cl(∆)2-cosets.

Denoting by SQ(∆) the kernel of the map Cl(∆) → ClQ(∆), the discrepancy is measured
by the dimension cQ of the F2-vector space SQ(∆)/Cl(∆)2. This depends on which odd
primes divide ∆ to an even power, and on the 2-adic valuation of ∆.

In each table, the discriminant of the first row are fundamental, and the others are
not. In the second and third table, the units in the quadratic extensions have norm +1
and −1 respectively.

∆< 0 Cl(∆) cQ
−22 ×7 Z/1 1
−23 ×7 Z/4 1
−24 ×7 Z/2 2
−25 ×7 Z/4×Z/2 2
−26 ×7 Z/2×Z/2 4
−27 ×7 Z/8×Z/2 4
−23 ×73 Z/28 1

∆> 0 Cl(∆) cQ
22 ×3×5 Z/2 1

22 ×32 ×5 Z/1 1
22 ×3×52 Z/2 2
22 ×33 ×5 Z/2 1
22 ×3×53 Z/1 1

22 ×33 ×52 Z/6 2
22 ×32 ×53 Z/1 1

∆ Cl(∆) cQ
5 & 13 Z/2 1
5×13 Z/2 1

52 ×13 Z/2 2
5×132 Z/2 2
53 ×13 Z/2 1
5×133 Z/2 1

53 ×133 Z/2 1

The last example fits in the family of ∆ = pu × q v for distinct primes p, q ≡ 1 mod 4
and u, v ∈ N. If u = 1, v = 0 then ∆ is fundamental and the genera coincide with the Q-
classes. For u, v ∈ N∗ we observe that cQ = 1 when both u, v are odd and cQ = 2 when
either u or v is even.

7. Arithmetic equivalence of singular moduli and modular geodesics

The modular group PSL2(Z) acts on the upper-half planeHP= {z ∈C | ℑ(z) > 0} by lin-
ear fractional transformations, and the quotient is the modular orbifoldM= PSL2(Z)\HP.

Consider primitive integral binary quadratic forms Qa ,Qb with non-square discrimi-
nant∆. Fix a root

p
∆which is to be positive if∆> 0, and define the first roots of Qa(x,1)

and Qb(x,1) by

α= −ma +
p
∆

2la
and β= −mb +

p
∆

2lb
.

Arithmetic equivalence of singular moduli. If ∆ > 0 then Qa , Qb are uniquely deter-
mined by their roots α,β ∈HP. Their PSL2(Z)-classes correspond to points [α], [β] ∈M,
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often called singular moduli in the study of elliptic curves. The geodesic arc from α to β
inHP has length λ given in terms of the cross-ratio bir(α′,α;β′,β) by the formula(

cosh λ
2

)2 = 1+cosh(λ)

2
= 1

bir(Qa ,Qb)
.

Corollary 7.1 (to Theorem 5.6). Two singular moduli [α], [β] ∈K(
p
∆) are K-equivalent

if and only if there exists a geodesic arc inM from [α] to [β] whose length λ is of the form(
cosh λ

2

)2 = 1

(2x)2 −∆y2 for x, y ∈K,

in which case all geodesic arcs from [α] to [β] have this property.

Arithmetic equivalence of modular geodesics. If ∆< 0, then Qa and Qb correspond to
oriented geodesics (α′,α), (β′,β) in HP. Their PSL2(Z)-classes correspond to primitive
closed oriented geodesics inM called modular geodesics, with length 2sinh−1(

p
∆/2).

Consider the oriented hyperbolic geodesics (α′,α) and (β′,β) inHP. If they intersect,
then their angle θ is given in terms of the cross-ratio bir(α′,α;β′,β) by the formula(

cos θ
2

)2 = 1+cos(θ)

2
= 1

bir(Qa ,Qb)
.

If they do not intersect, then they have a unique common perpendicular geodesic arc,
which may receive compatible co-orientations from each axis or not. When it is the case,
its length λ is given in terms of the cross-ratio bir(α′,α;β′,β) by the formula(

cosh λ
2

)2 = 1+cosh(λ)

2
= 1

bir(Qa ,Qb)

Corollary 7.2 (to Theorem 5.6). Two modular geodesics of the same length 2sinh−1(
p
∆/2)

areK-equivalent if and only if we have one of the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0,π[ such that(
cos θ

2

)2 = 1

(2x)2 −∆y2 for x, y ∈K

in which case all intersection points have this property.
λ There exists one co-oriented ortho-geodesic of length λ such that(

cosh λ
2

)2 = 1

(2x)2 −∆y2 for x, y ∈K

in which case all co-oriented ortho-geodesics have this property.

α′

α

β′

β

θ

α′

β

β′

α

λ

Figure 9. Cross-ratios and cosines in the real case.
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α′

α

β′

β θ

α′

α β′

β α′

α β′

β

Figure 10. Angle well defined in ]0,π[. Ortho-geodesics well and
badly co-oriented.

Remark 7.3. Theorem 5.6 holds over any integral ring in which 2 is invertible, so one
may similarly characterise genus equivalence (for all discriminants ∆) replacing Q by Zp

for all p ∈P .

Linking numbers of modular knots. Let us briefly relate the arithmetic-geometric in-
tersections of modular geodesics to the topological linking numbers of modular knots,
referring to [14] as well as [13, Chapter 0 and Chapter 5] for the details and much more
about this.

The unit tangent bundle of the modular orbifold M = PSL2(Z)\HP can be identified
with the manifold U= PSL2(Z)\PSL2(R), homeomorphic to the complement of a trefoil
knot in the sphere. The primitive closed geodesics of M lift in U to the primitive peri-
odic orbits for the geodesic flow: one may ask about the linking numbers between these
modular knots. They correspond to the PSL2(Z)-classes of primitive A ∈ PSL2(Z), or of
primitive a ∈ sl2(Z)∨, with positive discriminant.

Figure 11. The Seifert fibration U→M and two modular knots from
the online article [8], which proposes an animated introduction to the
topology and dynamics of U.

Let us introduce, for any pair of modular geodesics γA ,γB , the following sums of the
arithmetic-geometric quantities encountered in Corollary 7.2 over their oriented inter-
section angles θ ∈ ]0,π[:

Lq (A,B) = 1
2

∑(
cos θ

2

)
and Cosq (A,B) = 1

2

∑(
cosθ

)
and study their variations as we deform the metric onM by opening the cusp.

The complete hyperbolic metrics on the orbifold M correspond to the faithful and
discrete representations ρ : PSL2(Z) → PSL2(R) up to conjugacy. Since PSL2(Z) is the free
amalgam of its cyclic subgroups of order 2 and 3 generated by S = (

0 −1
1 0

)
and T = (

1 −1
1 0

)
,

http://www.josleys.com/articles/ams_article/Lorenz3.htm
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they form a 1-dimensional real algebraic set parametrized by q ∈R∗+, fixing S and conju-
gating T by exp

(− 1
2 log(q)K

)
:

Sq =
(
0 −1
1 0

)
Tq =

(
1 −q

q−1 0

)
Lq =

(
q 0
1 q−1

)
Rq =

(
q 1
0 q−1

)
.

The geometric-algebra of PSL2(K) applies in to the image of ρq : PSL2(Z) → PSL2(R), so
when the axes of Aq ,Bq ∈ SL2(R) intersect, their oriented angle has cosine:

cos(Aq ,Bq ) = sign(Tr(Aq )Tr(Bq ))
Tr(Aq Bq )−Tr(Aq B−1

q )√
disc(Aq )disc(Bq )

.

The hyperbolic conjugacy classes of PSL2(Z) still index the closed geodesics in the
quotientMq = ρq (PSL2(Z))\HPwhich do not surround the cusp. We may thus define the
analogous sums Lq (A,B) and Cosq (A,B) over the intersection angles θq ∈ ]0,π[ between

the q-modular geodesics γAq ,γBq ⊂Mq of the 1
2

(
cos 1

2θq
)2 and

(
cosθq

)
.

As q → ∞, the hyperbolic orbifold Mq has a convex core which retracts onto a thin
neighbourhood of the long geodesic arc connecting its conical singularities, whose pre-
image in the universal cover HP is a trivalent tree. In the limit we recover the action of
PSL2(Z) on its Bruhat–Tits building, the infinite planar trivalent tree T , and by studying
its combinatorics [14] proves the following.

Theorem 7.4 (Linking and intersection numbers from boundary evaluations). For prim-
itive hyperbolic A,B ∈ PSL2(Z), the functions Lq (A,B) and Cosq (A,B) on the PSL2(R)-
character variety of PSL2(Z) have limits

Lq (A,B) −−−−→
q→∞ lk(A,B),

Cosq (A,B) −−−−→
q→∞ lk(A,B)− lk(A−1,B) = lk(A,B)− 1

4 I (A,B).

Hence the functions Lq &Cosq interpolate between the geometry at q = 1 of the arith-
metic group PSL2(Z) ⊂ PSL2(R) and the topology at q =+∞ of the combinatorial action
PSL2(Z) → Aut(T ).

Remark 7.5. This discussion naturally carries over to the field of functions K = Q(q) on
the character variety of PSL2(Z), or its universal quadratic closure.

The series Lq (A,B) is thus reminiscent of the special value at s = 2 of a restricted zeta
function: its terms 1

2

(
1+cos(Aq ,Bq )

) = 1/bir(Aq ,Bq ) are the inverse norms of certain

principal ideals for the quadratic extension ofQ(q) generated by
√

disc(Aq )disc(Bq ).

Let us display the graphs of q 7→ 2Lq (A,B) and q 7→ 2Lq (A,B−1) along with their aver-
age 1

2 I (A,B) for some pairs A,B ∈ PSL2(N). The legend A = [a0, a1, . . . ] means
A = Ra0 Ln1 . . . has attractive fixed point α ∈RP1 with continued fraction α= a0 + 1

a1+··· .

Figure 12. Lq (A,B) interpolates between the arithmetic at 1 and the
topology at +∞.
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Remark 7.6. Variation on Theorem 7.4 can be obtained by applying by any continuous
function on the interval [0,1] to the terms of Lq (A,B). A particularly interesting example
is given by

Lq (A,B) = 1
2

∑
L

(
cos θ

2

)= 1
2

∑
L

(
bir(α′,α;β′,β)

)
,

where L (z) = ∑∞
n=1

zn

n2 + 1
2 log(|z|) log(1− z) is Rogers’ normalisation of the dilogarithm,

yielding

Lq (A,B) −−−−→
q→∞

π
6 lk(A,B).
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