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Uniform Lp Resolvent Estimates on the Torus

Jonathan Hickman

(Recommended by Christopher Sogge)

Abstract. A new range of uniform Lp resolvent estimates is obtained
in the setting of the flat torus, improving previous results of Bourgain,
Shao, Sogge and Yao. The arguments rely on the `2-decoupling
theorem and multidimensional Weyl sum estimates.

1. Introduction

This article continues a line of investigation pursued by Dos Santos Ferreira, Kenig
and Salo [DSFKS14] and Bourgain, Shao, Sogge and Yao [BSSY15] concerning uniform
Lp estimates for resolvents of Laplace–Beltrami operators on compact manifolds. Here
new bounds are obtained only in the special case of the flat n-dimensional torus
Tn := Rn \Zn but, in order to contextualise the results, it is useful to recall the general
setup from [DSFKS14, BSSY15]. To this end, let (M , g ) be a smooth, compact manifold
of dimension n ≥ 3 without boundary and ∆g be the associated Laplace–Beltrami oper-
ator. In [DSFKS14] the following problem was introduced: determine the regions R ⊆C
for which there is a uniform bound

(1.1) ‖u‖
L

2n
n−2 (M)

≤CR‖(∆g + z)u‖
L

2n
n+2 (M)

for all z ∈R.

Interest in inequalities of the form (1.1) was partly inspired by earlier work on the
standard Laplacian on n-dimensional euclidean space. In the euclidean setting, it was
shown by Kenig, Ruiz and Sogge [KRS87] that, inter alia, the euclidean analogue of (1.1)
holds for R = C; scaling considerations imply that ( 2n

n+2 , 2n
n−2 ) is the only exponent pair

lying on the line of duality for which such uniformity is possible.1 This observation par-
tially motivates the choice of Lebesgue exponents featured above. By contrast, unifor-
mity in (1.1) over the whole of C patently fails for compact manifolds (M , g ): in this case
−∆g has a discrete spectrum and therefore (1.1) cannot hold whenever z is an eigenvalue
of −∆g . Therefore, it is natural when working in the compact manifold setting to con-
sider regions R which are bounded away from the nonnegative real line, and thereby
avoid the spectrum.

As in [BSSY15], it is convenient to write z = (λ+ iµ)2 for some λ,µ ∈ R and express
the results in terms of these real parameters. For λ ≤ 1 the situation is relatively easy
to understand and is treated in [BSSY15, §2]. Henceforth, it is assumed that λ ≥ 1. The
problem is to determine how small |µ| can be (in terms of λ) whilst retaining uniformity
in (1.1).

Theorem 1. Let n ≥ 3 and ∆Tn be the Laplacian on the flat torus Tn := Rn/Zn . For all
ε> 0 the uniform Lp resolvent bound

‖u‖
L

2n
n−2 (Tn )

≤Cε‖(∆Tn + z)u‖
L

2n
n+2 (Tn )
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1For certain proper subsets R of Cmany other (p, q) exponent pairs are possible: see [KL19].
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Figure 1. Successive results and the optimal region. Each curve γDKSS,
γBSSY, γnew and γopt corresponds to the interesting part of the bound-
ary of RDKSS, RBSSY, Rnew and Ropt, respectively, in the coordinates
(λ,µ).

holds whenever z ∈C belongs to the region

Rnew := {
z = (λ+ iµ)2 ∈C :λ,µ ∈R,λ≥ 1, |µ| ≥λ−1/3+ε}.

It is useful to compare the theorem with existent results. Shen [She01] previously
showed that Theorem 1 holds in the more restrictive region

RDKSS := {
z = (λ+ iµ)2 ∈C :λ,µ ∈R,λ≥ 1, |µ| ≥ 1

}
.

This was later generalised to arbitrary compact manifolds by Dos Santos Ferreira, Kenig
and Salo [DSFKS14]. In [DSFKS14] it was also asked whether it is possible to extend
the uniform bounds beyond RDKSS for general manifolds. Interestingly, Bourgain, Shao,
Sogge and Yao [BSSY15] showed that the region RDKSS is, in fact, optimal in the case of
Zoll manifolds (one example being the standard euclidean sphere Sn), in the sense that
here it is not possible to relax |µ| ≥ 1 to |µ| ≥ λ−α for any α> 0 in RDKSS. Underpinning
such behaviour in the Zoll case is the tight spectral clustering exhibited by −∆g . Cluster-
ing does not occur for the torus and, consequently, improvements may be obtained for
Tn . Indeed, in [BSSY15] it was shown that for all ε> 0 Theorem 1 holds for the region

RBSSY := {
z = (λ+ iµ)2 ∈C :λ,µ ∈R,λ≥ 1, |µ| ≥λ−εn+ε},

where εn > 0 is given by

εn := 2(n −1)

n(n +1)
if n ≥ 3 is odd, εn := 2(n −1)

n2 +2n −2
if n ≥ 4 is even;

furthermore, by using additional number-theoretic input, it was also shown in [BSSY15]
that for n = 3 the slightly relaxed condition ε3 := 85

252 is sufficient.
Theorem 1 provides a further improvement over the ranges RDKSS and RBSSY (at least

for n > 3); see Figure 1. Note for n = 3 the numerology of the new result coincides with
the 2(n−1)

n(n+1) exponent from [BSSY15]. A pleasant feature of Theorem 1 is that Rnew pro-
vides a “uniform” strengthening over RDKSS in all dimensions.

It is remarked that Rnew is certainly not sharp and a natural conjecture would be the
following.
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Conjecture 2. Let n ≥ 3 and ∆Tn be the Laplacian on the flat torus Tn := Rn/Zn . For all
ε> 0 the uniform Lp resolvent bound

‖u‖
L

2n
n−2 (Tn )

≤Cε‖(∆Tn + z)u‖
L

2n
n+2 (Tn )

holds whenever z ∈C belongs to the region

Ropt := {
z = (λ+ iµ)2 ∈C :λ,µ ∈R,λ≥ 1, |µ| ≥λ−1+ε}.

A slightly larger region, given by taking ε = 0 in the definition of Ropt, featured in
the original question posed in [DSFKS14]. Conjecture 2 is closely related to the so-called
discrete restriction conjecture for the sphere studied in [Bou93], which partially motivates
the above definition of Ropt; this connection is discussed in more detail in §2 below.

The proof of Theorem 1 follows the strategy of [BSSY15] but takes advantage of new
estimates available due to the Bourgain–Demeter `2-decoupling theorem [BD15b].

In [BSSY15] uniform resolvent estimates were shown to be equivalent to L
2n

n+2 → L
2n

n−2

bounds for certain spectral projectors with thin bandwidths; the precise details of this
equivalence are recalled in §2. The desired spectral projection bounds are then proved
using the `2-decoupling inequality. It is not surprising that decoupling should play
a rôle here since it has already had numerous applications to the spectral theory of
∆Tn [Bou13, BD15b, BSSY15].

The Bourgain–Demeter theorem yields an L
2(n+1)

n+3 → L
2(n+1)

n−1 bound for the projector;

see Corollary 9 below. Roughly speaking, to obtain the desired L
2n

n+2 → L
2n

n−2 inequality,

one interpolates the L
2(n+1)

n+3 → L
2(n+1)

n−1 estimate with an L1 → L∞ estimate. The L∞ bound
for the projector follows from a pointwise estimate for the kernel which, as in [BSSY15],
is established using the classical lattice point counting method of Hlawka [Hla50] (see
also [Sog17, Chapter 1]).

Hlawka’s original argument [Hla50] has been refined by numerous authors (see, for
instance, [KN91, KN92, Mül99, Guo12]). In [BSSY15] exponential sum bounds from
[KN92] were applied to yield the slightly improved exponent ε3 = 85

252 mentioned above.
Similarly, by applying a more refined analysis involving the multidimensional Weyl sum
estimates from [Mül99], it is possible to slightly extend Rnew in all dimensions.

Theorem 3. For n ≥ 3 and all ε> 0 the result of Theorem 1 holds for

R′
new := {

z = (λ+ iµ)2 ∈C :λ,µ ∈R,λ≥ 1, |µ| ≥λ−βn+ε},

where

βn := 1

3
+ n

3
· 1

21n2 −n −24
.

Taking n = 3, the exponent becomes β3 = 55
162 which is slightly larger than the previ-

ous best exponent ε3 = 85
252 from [BSSY15]. This improvement for n = 3 is due in part

to the use of stronger multidimensional Weyl sum estimates from [Mül99] (as opposed
to the estimates of [KN92] used in [BSSY15]) and also due in part to the use of the `2-
decoupling inequality, which allows for greater leverage of the exponential sum bounds.

This article is structured as follows:

• In §2 preliminary results from [BSSY15] and, in particular, the details of the
equivalence between resolvent and spectral projection estimates, are reviewed.

• In §3 spectral projection bounds are proven, following the scheme described
above. Using the equivalence discussed in §2, this provides the proof of Theo-
rem 1.

• In §4 exponential sum estimates from [Mül99] are applied to refine the argu-
ment from §3, yielding Theorem 3.
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Notation. Given positive numbers A,B ≥ 0 and a list of objects L, the notation A.L B ,
B &L A or A = OL(B) signifies that A ≤CLB where CL is a constant which depends only
on the objects in the list and the dimension n. Furthermore, A ∼L B signifies that A.L B
and B .L A.

Acknowledgement. The author is indebted to Christopher D. Sogge both for suggest-
ing the problem and for providing a number of helpful comments regarding the pre-
sentation. This research was partly carried out during a visit to the Institute of Applied
Physics and Computational Mathematics, Beijing, in June 2019 and the author would
like to thank Changxing Miao for his kind hospitality. Finally, the author is grateful to
the anonymous referee for their careful reading of the manuscript and numerous useful
suggestions.

2. Spectral projections

An equivalent formulation. It was shown in [BSSY15] that the desired resolvent esti-
mates are equivalent to certain spectral projection bounds. Given λ ≥ 1 and ρ > 0, de-
fine

A(λ,ρ) := {
ξ ∈ R̂n :

∣∣|ξ|−λ∣∣< ρ}
;

here R̂n denotes the frequency space. In the case of the torus, [BSSY15, Theorem 1.3]
implies the following.

Theorem 4 ([BSSY15]). Given n ≥ 3 and 0 <α≤ 1, the following are equivalent:

i) For all λ≥ 1 there is a uniform spectral projection estimate

(2.1)
∥∥∥ ∑

k∈Zn∩A(λ,λ−α)
f̂ (k)e2πi x·k

∥∥∥
L

2n
n−2 (Tn )

.α λ
1−α‖ f ‖

L
2n

n+2 (Tn )
.

ii) There is a uniform resolvent estimate

‖u‖
L

2n
n−2 (Tn )

.α ‖(∆Tn + z)u‖
L

2n
n+2 (Tn )

for all z = (λ+ iµ)2 ∈C such that λ,µ ∈R satisfy λ≥ 1, |µ| ≥λ−α.

Remark 5. In [BSSY15] a more general statement is proven for compact manifolds.

The remaining sections of this paper will focus on proving spectral projection bounds
of the type featured above.

Relationship with discrete Fourier restriction. Although it will not play any rôle in later
arguments, it is nevertheless instructive to remark that Theorem 4 relates the resolvent
and discrete restriction conjectures.

Conjecture 6 (Discrete restriction conjecture [Bou93]). For n ≥ 3, λ≥ 1 and ε> 0,

(2.2)
∥∥∥ ∑

k∈Zn∩λSn−1

f̂ (k)e2πi x·k
∥∥∥

L
2n

n−2 (Tn )
.ε λ

ε‖ f ‖L2(Tn ).

In particular, if eλ is an L2-normalised eigenfunction for −∆Tn with eigenvalue λ2,
then Conjecture 6 implies that ‖eλ‖L2n/(n−2)(Tn ) .ε λ

ε. Various partial results on this
problem are known, establishing weaker versions of (2.2) with larger values of p on the
left-hand side: see [Bou93, Bou97, BD13, BD15a, BD15b].

By elementary separation properties of concentric lattice spheres, (2.2) is equivalent
to ∥∥∥ ∑

k∈Zn∩A(λ,λ−1)

f̂ (k)e2πi x·k
∥∥∥

L
2n

n−2 (Tn )
.ε λ

ε‖ f ‖L2(Tn ).

using a T ∗T argument, it is not difficult to see, that the above estimate would follow
from (2.1) with α = 1− ε. Thus, by Theorem 4, the resolvent conjecture (Conjecture 2)
implies the discrete restriction conjecture (Conjecture 6).
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3. The proof of Theorem 1

By Theorem 4, the uniform resolvent estimates in Theorem 1 are equivalent to the
following spectral projection bounds.

Proposition 7. Let n ≥ 3, λ≥ 1 and ε> 0. If ρ :=λ−1/3+ε, then

(3.1)
∥∥∥ ∑

k∈Zn∩A(λ,ρ)
f̂ (k)e2πi x·k

∥∥∥
L

2n
n−2 (Tn )

.ε ρλ‖ f ‖
L

2n
n+2 (Tn )

.

Given m ∈ `∞(Zn) let m(D) denote the associated Fourier multiplier operator, de-
fined initially on C∞(Tn) by

m(D) f (x) := ∑
k∈Zn

m(k) f̂ (k)e2πi x·k .

If m ∈ L∞(R̂n), then m(D) := m|Zn (D) where m|Zn denotes the restriction of m to the
integer lattice. Thus, with this notation, one may write (3.1) as

(3.2) ‖χA(λ,ρ)(D) f ‖
L

2n
n−2 (Tn )

.ε ρλ‖ f ‖
L

2n
n+2 (Tn )

.

The remainder of this section deals with the proof of Proposition 7.

Smooth multipliers. In proving Proposition 7, one may replace the rough cutoff func-
tion χA(λ,ρ) with a smoothed out version. Indeed, by T ∗T , (3.2) is equivalent to

(3.3) ‖χA(λ,ρ)(D) f ‖L2(Tn ).ε (ρλ)1/2‖ f ‖
L

2n
n+2 (Tn )

.

Fix β ∈C∞
c (R) nonnegative with β(r ) = 1 for |r | ≤ 1 and β(r ) = 0 for |r | ≥ 2 and define the

multiplier

(3.4) mλ,ρ(ξ) :=β(
ρ−1(|ξ|−λ)

)
.

By L2-orthogonality, (3.3) would follow from the bound∥∥mλ,ρ(D)1/2 f
∥∥

L2(Tn ).ε (ρλ)1/2‖ f ‖
L

2n
n+2 (Tn )

and, by a second application of T ∗T , this would further follow from

(3.5) ‖mλ,ρ(D) f ‖
L

2n
n−2 (Tn )

.ε ρλ‖ f ‖
L

2n
n+2 (Tn )

.

Consequences of`2-decoupling. The proof of Proposition 7 relies on the`2-decoupling
theorem proved in [BD15b]. It is convenient to work with a rescaled version of the
decoupling theorem, in the special case of the euclidean sphere. For λ ≥ 1 and g ∈
L1(λSn−1) let

Eλg (x) :=
∫
λSn−1

g (ω)e2πi x·ωdσλSn−1 (ω), x ∈Rn ,

where the integration is with respect to the normalised (to have unit mass) surface mea-
sure on λSn−1.

Theorem 8 (Bourgain–Demeter [BD15b]). Letλ& 1, 1& ρ ≥λ−1 andΘ(λ,ρ) be a finitely-
overlapping covering of λSn−1 by (ρλ)1/2-caps. Given g ∈ L1(λSn−1) write gθ := g ·χθ. For
all ε> 0,

‖Eλg‖
L

2(n+1)
n−1 (Bρ−1 )

.ε λ
ε
( ∑
θ∈Θ(λ,ρ)

‖Eλgθ‖2

L
2(n+1)

n−1 (wB
ρ−1 )

) 1
2

.
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Here Br is used to denote an r -ball: that is, Br is a ball in Rn with (arbitrary) centre
c(Br ) and radius r > 0. The weight wBr is the function concentrated on Br given by

(3.6) wBr (x) := (
1+ r−1|x − c(Br )|)−6N

where N := 100n. Finally, an r -cap on the sphere λSn−1 is the intersection of λSn−1 with
an r -ball centred at a point on λSn−1.

Using Theorem 8, one may prove an L
2(n+1)

n+3 → L
2(n+1)

n−1 bound for the projector in (3.1).

Corollary 9. Let n ≥ 3, λ& 1 and 1& r ≥λ−1. For all ε> 0,

(3.7)
∥∥χA(λ,r )(D) f

∥∥
L

2(n+1)
n−1 (Tn )

.ε λ
ε(rλ)

n−1
n+1 ‖ f ‖

L
2(n+1)

n+3 (Tn )
.

By duality and T ∗T , (3.7) is equivalent to either of the following inequalities:

‖χA(λ,r )(D) f ‖
L

2(n+1)
n−1 (Tn )

.ε λ
ε(rλ)

n−1
2(n+1) ‖ f ‖L2(Tn ),(3.8)

‖χA(λ,r )(D) f ‖L2(Tn ).ε λ
ε(rλ)

n−1
2(n+1) ‖ f ‖

L
2(n+1)

n+3 (Tn )
.(3.9)

Remark 10. If r = λ−1, then Corollary 9 corresponds to a special case of the discrete
Fourier restriction theorem of Bourgain–Demeter [BD15b, Theorem 2.2]. On the other
hand, if r ∼ 1, then (3.7) holds with no ε-loss as a simple consequence of the Stein–
Tomas restriction theorem for the sphere, as discussed below.

Proof (of Corollary 9). As remarked earlier, it suffices to prove (3.8). It is well known (see,
for instance, [BD15b]) that Theorem 8 implies a discrete version of itself. In particular,
defining R := r−1, given any 1-separated subsetΩλ ⊆λSn−1 and any sequence (aω)ω∈Ωλ ,
it follows that

(3.10)
∥∥∥ ∑
ω∈Ωλ

aωe2πi x·ω
∥∥∥

L
2(n+1)

n−1 (BR )
.ε λ

ε
( ∑
θ∈Θ(λ,r )

∥∥∥ ∑
ω∈Ωλ∩θ

aωe2πi x·ω
∥∥∥2

L
2(n+1)

n−1 (wBR )

) 1
2

.

Indeed, this may be deduced by fixing ψ ∈C∞
c (R̂n) with ψ(0) = 1, applying Theorem 8 to

the functions
gδ(w) := ∑

ω∈Ωλ
aωψ(δ−1(w −ω))

for δ> 0 and applying a simple limiting argument; see [BD15b].
The spatial variable in (3.10) is localized to a ball of radius R = r−1, inducing fre-

quency uncertainty at scale r . In particular, one can, at least heuristically, replace the
family of pointsΩλ in this inequality with any perturbed family

Ω̃λ = {ω+O(r ) :ω ∈Ωλ}.

For instance, one may take Ω̃λ :=Zn ∩ A(λ,r ), in which case (3.10) implies the heuristic
inequality

(3.11) ‖χA(λ,r )(D) f ‖
L

2(n+1)
n−1 (BR )

.ε λ
ε
( ∑
θ∈Θ(λ,r )

‖χAθ(λ,r )(D) f ‖2

L
2(n+1)

n−1 (wBR )

)1/2

where Aθ(λ,r ) is the intersection of A(λ,r ) with the sector generated by θ. Giving a rig-
orous justification for this uncertainty heuristic is a messy affair and is therefore post-
poned until the end of the proof.

Since the functions appearing in either side of (3.11) are 1-periodic, it follows that

‖χA(λ,r )(D) f ‖
L

2(n+1)
n−1 (Tn )

.ε λ
ε
( ∑
θ∈Θ(λ,r )

‖χAθ(λ,r )(D) f ‖2

L
2(n+1)

n−1 (Tn )

)1/2
.

To bound the right-hand side, observe the elementary estimate

‖χAθ(λ,r )(D) f ‖L∞(Tn ) ≤ [#Zn ∩ Aθ(λ,r )]1/2‖χAθ(λ,r )(D) f ‖L2(Tn )
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holds by a combination of Cauchy–Schwarz and Plancherel’s theorem. Thus, given 2 ≤
p ≤∞, it follows that

(3.12) ‖χAθ(λ,r )(D) f ‖Lp (Tn ) ≤ [#Zn ∩ Aθ(λ,r )]1/2−1/p‖χAθ(λ,r )(D) f ‖L2(Tn ).

Applying the bound #Zn ∩ Aθ(λ,r ). (rλ)
n−1

2 , taking `2-norms in θ of both sides of the
above inequality and using Plancherel’s theorem to sum, the desired estimate follows.

It remains to give a rigorous justification of the uncertainty principle heuristic used
in the above argument. Given k ∈ Zn ∩ A(λ,r ) let ωk denote the point on λSn−1 closest
to k, so that |ωk −k| < r , and Ωλ denote the collection of all such ωk . Suppose x̄ ∈ Rn is
the centre of BR . Applying the Taylor series expansion for the exponential,

χA(λ,r )(D) f (x) = ∑
α∈Nn

0

(2πi )|α|(x − x̄)α

α!

∑
ωk∈Ωλ

(k −ωk )α f̂ (k)e2πi x̄·(k−ωk )e2πi x·ωk

=:
∑
α∈Nn

0

(2πi )|α|(x − x̄)α

α!

∑
ω∈Ωλ

aα,ωe2πi x·ω,

where |α| =α1 +·· ·+αn , α! =α1! · · ·αn ! and xα = xα1
1 · · ·xαn

n for α ∈Nn
0 and x ∈Rn . Thus,

by the triangle inequality and (3.10), the left-hand side of (3.11) is dominated by

λε
∑
α∈Nn

0

(2πR)|α|

α!

( ∑
θ∈Θ(λ,r )

∥∥∥ ∑
ω∈Ωλ∩θ

aα,ωe2πi x·ω
∥∥∥2

L
2(n+1)

n−1 (wBR )

) 1
2

.

Given l ∈Zn write x̄l := Rl and B l := B(x̄l ,
p

nR) so that∥∥∥ ∑
ω∈Ωλ∩θ

aα,ωe2πi x·ω
∥∥∥

L
2(n+1)

n−1 (wBR )
.

∑
l∈Zn

(1+|l |)−N
∥∥∥ ∑
ω∈Ωλ∩θ

aα,ωe2πi x·ω
∥∥∥

L
2(n+1)

n−1 (B l )
,

where N := 100n is the exponent appearing in the definition of the weight function from
(3.6). Indeed, this follows by pointwise dominating wBR by a weighted sum of charac-
teristic functions thus:

wBR (x).
∑

l∈Zn
(1+|l |)−6NχB l (x).

As before, one may write

∑
ω∈Ωλ∩θ

aα,ωe2πi x·ω = ∑
β∈Nn

0

(2πi )|β|(x − x̄l )β

β!

∑
ωk∈Ωλ∩θ

(ωk −k)βaα,ωk e2πi x̄l ·(ωk−k)e2πi x·k

= ∑
β∈Nn

0

(2πi )|β|(x − x̄l )β

β!
χAθ(λ,r )(D)mα,β,l (D) f (x)

where mα,β,l is supported on Zn ∩ A(λ,r ) and is given by

mα,β,l (k) := (−1)|β|(k −ωk )α+βe2πi (x̄−x̄l )·(k−ωk ) for k ∈Zn ∩ A(λ,r ).

In particular,

max
k∈Zn∩A(λ,r )

|mα,β,l (k)|. r |α|+|β|.

By combining the above observations, applying the triangle inequality and exploiting
periodicity, one concludes that ‖χA(λ,r )(D) f ‖

L
2(n+1)

n−1 (Tn )
is dominated by

λε
∑

α,β∈Nn
0

l∈Zn

(2πR)|α|+|β|

α!β!
(1+|l |)−N

( ∑
θ∈Θ(λ,r )

‖χAθ(λ,r )(D)mα,β,l (D) f ‖2

L
2(n+1)

n−1 (Tn )

)1/2
.
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Finally, a slight modification of the argument used to prove (3.12) shows that, given 2 ≤
p ≤∞,

‖χAθ(λ,r )(D)mα,β,l (D) f ‖Lp (Tn ). r |α|+|β|[#Aθ(λ,r )]1/2−1/p‖χAθ(λ,r )(D) f ‖L2(Tn ).

The gain in r in the previous inequality compensates for the earlier losses in R and the
desired estimate (3.8) now readily follows from Plancherel’s theorem. �

It is remarked that discretization arguments similar to those above have frequently
appeared elsewhere in the literature: see, for instance, [TV00].

Corollary 11. Let n ≥ 3, λ≥ 1 and 1& r > λ−1 and suppose m ∈ `∞(Zn) is supported in
A(λ,r ). For all ε> 0,

‖m(D) f ‖
L

2(n+1)
n−1 (Tn )

.ε λ
ε(rλ)

n−1
n+1 ‖m‖`∞(Zn )‖ f ‖

L
2(n+1)

n+3 (Tn )
.

Proof. The corollary follows easily by writing

m =χA(λ,r ) ·m ·χA(λ,r )

and successively applying (3.8), Plancherel’s theorem and (3.9). �

Consequences of the Stein–Tomas theorem. An equivalent formulation of the Stein–
Tomas restriction theorem for the sphere is that

(3.13)
(∫

A(λ,1)
|F̂ (ξ)|2 dξ

)1/2
.λ

n−1
2(n+1) ‖F‖

L
2(n+1)

n+3 (Rn )
;

see, for instance, [Tao04] or [Sog17, Chapter 5]. This implies a version of Corollary 9 for
r = 1 with no ε-loss in the exponent.

Corollary 12. Let n ≥ 3 and λ& 1. Then∥∥χA(λ,1)(D) f
∥∥

L
2(n+1)

n−1 (Tn )
.λ

n−1
n+1 ‖ f ‖

L
2(n+1)

n+3 (Tn )
.

Remark 13. Corollary 12 is also a special case of a more general spectral projection
bound for compact Riemann manifolds: see [Sog88] or [Sog17, Chapter 5].

Proof (of Corollary 12). As before, by T ∗T the desired estimate is equivalent to

(3.14)
∥∥χA(λ,1)(D) f

∥∥
L2(Tn ).λ

n−1
2(n+1) ‖ f ‖

L
2(n+1)

n+3 (Tn )
.

Fix f ∈ C∞(Tn) and let ψ ∈ S (Rn) be nonzero and Fourier supported in a ball of
radius 1/2. Letting F ∈S (Rn) be defined by

F (x) := ∑
k∈Zn

f̂ (k)e2πi x·kψ(x),

the estimate (3.14) now follows by applying (3.13) to this function. �

Arguing precisely as in the previous subsection, Corollary 12 implies a version of
Corollary 11 for r = 1 with no ε-loss.

Corollary 14. Let n ≥ 3 and λ≥ 1 and suppose m ∈ `∞(Zn) is supported in A(λ,1). Then

‖m(D) f ‖
L

2(n+1)
n−1 (Tn )

.λ
n−1
n+1 ‖m‖`∞(Zn )‖ f ‖

L
2(n+1)

n+3 (Tn )
.

Remark 15. Corollary 14 is also a special instance of the multiplier lemma from [BSSY15,
Lemma 2.3], which applies to more general compact Riemannian manifolds.
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Proof of the spectral projection bound. The ingredients introduced above may now be
combined to prove the desired spectral projection bound.

Proof (of Proposition 7). Fixing ε > 0, recall that it suffices to show (3.5) holds for ρ =
λ−1/3+ε. In order to justify this choice of ρ, and in view of the proof of Theorem 3 below,
it will be convenient to initially let ρ denote some unspecified parameter satisfying 1&
ρ ≥λ−1 and only fix the value later in the argument.

Fix a Schwartz function η on R̂n satisfying η̌(x) = 1 whenever |x| ≤ 1. Recalling the
definition of the smoothed out multiplier mλ,ρ from (3.4), decompose

mλ,ρ = mλ,ρ
0 +mλ,ρ

1

where mλ,ρ
0 := mλ,ρ ∗η. Writing p1 := 2n

n−2 , it follows that

(3.15) ‖mλ,ρ(D)‖p ′
1→p1

≤ ‖mλ,ρ
0 (D)‖p ′

1→p1
+‖mλ,ρ

1 (D)‖p ′
1→p1

where p ′ denotes the Hölder conjugate of a Lebesgue exponent p.
Both terms on the right-hand side of (3.15) are estimated via complex interpolation

between an Lp ′
0 → Lp0 bound for p0 := 2(n+1)

n−1 and an L1 → L∞ bound. In particular, by
the Riesz–Thorin theorem,

(3.16) ‖mλ,ρ
j (D)‖p ′

1→p1
≤ ‖mλ,ρ

j (D)‖
(n−2)(n+1)

n(n−1)

p ′
0→p0

‖mλ,ρ
j (D)‖

2
n(n−1)
1→∞ for j = 0,1.

To bound mλ,ρ
0 (D), apply a partition of unity to decompose

η= ∑
`∈Zn

(1+|`|)−N η̃`

where N := 100n and each η̃` is supported on the ball of radius
p

n, say, centred at ` and
satisfies ‖η̃`‖∞. 1. Note that the latter property holds due to the rapid decay of η. This
induces a corresponding decomposition of the multiplier

(3.17) mλ,ρ
0 = ∑

`∈Zn
(1+|`|)−N m̃λ,ρ

`

where each m̃λ,ρ
`

is supported on the Minkowski sum

suppmλ,ρ + supp η̃` ⊆ `+ A(λ,4
p

n).

Furthermore,

(3.18) ‖m̃λ,ρ
`

‖`∞(Zn ). ρ and ‖m̃λ,ρ
`

‖`1(Zn ). ρλ
n−1.

To see this, observe that |m̃λ,ρ
`

(ξ)|. |B(`+ξ,1)∩ A(λ,ρ)|, which immediately yields the

`∞ estimate. The `1 bound then follows from the `∞ estimate and the fact that #
(
Zn ∩

`+ A(λ,4
p

n)
)
.λn−1. Consequently, and in view of Corollary 14,

(3.19) ‖m̃λ,ρ
`

(D)‖p ′
0→p0

. ρλ
n−1
n+1 and ‖m̃λ,ρ

`
(D)‖1→∞. ρλn−1.

More precisely, the first inequality in (3.19) follows from Corollary 14 together with the
`∞ estimate from (3.18). Here it is important to use Corollary 14 rather than Corollary 11
to ensure that there is no ε-loss in the exponent: indeed, otherwise one obtains (3.1) with
a ρλ1+ε factor (as opposed to a ρλ factor) on the right-hand side, which is unsuitable
for the desired application of Theorem 4. The second inequality in (3.19) is a direct
consequence of the `1 estimate in (3.18) (which allows one to bound the `∞ norm of the

kernel associated to mλ,ρ
`

(D)).
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Using the triangle inequality and the decay factor in (3.17) to sum the above esti-
mates,

(3.20) ‖mλ,ρ
0 (D)‖p ′

0→p0
. ρλ

n−1
n+1 and ‖mλ,ρ

0 (D)‖1→∞. ρλn−1.

Interpolating the two inequalities in (3.20) via (3.16), one deduces that

(3.21) ‖mλ,ρ
0 (D)‖p ′

1→p1
. ρλ.

It remains to bound mλ,ρ
1 (D). Since the multiplier mλ,ρ is supported in A(λ,2ρ) and

is uniformly bounded, it follows from Corollary 11 that

(3.22) ‖mλ,ρ
1 (D)‖p ′

0→p0
≤ ‖mλ,ρ

0 (D)‖p ′
0→p0

+‖mλ,ρ(D)‖p ′
0→p0

.ε λ
ε(ρλ)

n−1
n+1 ,

where the first term on the right-hand side is estimated using (3.20). On the other hand,
it is claimed that

(3.23) ‖mλ,ρ
1 (D)‖1→∞. (λ/ρ)(n−1)/2.

Temporarily assuming this bound, interpolating (3.23) against (3.22) via (3.16) yields

(3.24) ‖mλ,ρ
1 (D)‖p ′

1→p1
.ε λ

ερ1−3/nλ1−1/n .

Substituting (3.21) and (3.24) into (3.15), one concludes that

(3.25) ‖mλ,ρ(D)‖p ′
1→p1

.ε ρλ+λερ1−3/nλ1−1/n .

Replacing ε with 3ε/n in the above display and choosing ρ = λ−1/3+ε so as to optimize
the estimate, one deduces the desired bound. Thus, it remains to verify (3.23).

Computing the kernel of mλ,ρ
1 (D) and applying the Poisson summation formula,

(3.26) ‖mλ,ρ
1 (D)‖1→∞ ≤ sup

x∈Tn

∣∣∣ ∑
k∈Zn

mλ,ρ
1 (k)e2πi x·k

∣∣∣= sup
x∈Tn

∣∣∣ ∑
k∈Zn

(
mλ,ρ

1

)
q(x +k)

∣∣∣.
Note that

(
mλ,ρ

1

)
q(x) = (

mλ,ρ
)
q(x)

(
1− η̌(x)

)
. If σ denotes the surface measure on Sn−1,

then applying polar coordinates to the definition of the Fourier transform yields

(3.27)
(
mλ,ρ)

q(x) =
∫ ∞

0
σ̌(r x)β

(
ρ−1(r −λ)

)
r n−1 dr.

By stationary phase (see, for instance, [Ste93, Chapter VIII] or [Sog17, Chapter 1])

σ̌(x) =∑
±

e±2πi |x|a±(x),

where each a± ∈ C∞(Rn) is a symbol of order −(n −1)/2 in the sense that |∂αx a±(x)|.α
(1+ |x|)−(n−1)/2−|α| for all α ∈ Nn

0 . Substituting this identity into (3.27) and applying a
change of variables,

(3.28)
(
mλ,ρ)

q(x) = ρ∑
±

∫ ∞

0
e±2πi rρ|x|a±(ρr x)β

(
r −ρ−1λ

)
(ρr )n−1 dr.

Applying repeated integration by parts, it follows that

(3.29) |(mλ,ρ)
q(x)|. ρλn−1(1+λ|x|)−(n−1)/2(1+ρ|x|)−N .

ρλ(n−1)/2

|x|(n−1)/2
(1+ρ|x|)−N .

To bound the right-hand side of (3.26) the sum is broken into two pieces. Fix x ∈ Tn

and write ∣∣∣ ∑
k∈Zn

(
mλ,ρ

1

)
q(x +k)

∣∣∣. ∣∣(mλ,ρ
1

)
q(x)

∣∣+ ∣∣∣ ∑
k∈Zn \{0}

(
mλ,ρ

1

)
q(x +k)

∣∣∣
Since 1− η̌ vanishes to infinite order at the origin, (3.29) implies that∣∣(mλ,ρ

1

)
q(x)

∣∣= ∣∣(mλ,ρ)
q(x)

(
1− η̌(x)

)∣∣. ρλ(n−1)/2.
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The remaining term satisfies the following, more restrictive, bound.

Lemma 16. ∣∣∣ ∑
k∈Zn \{0}

(
mλ,ρ

1

)
q(x +k)

∣∣∣. (λ/ρ)(n−1)/2.

Proof. Since |(mλ,ρ
1

)
q(x)|. |(mλ,ρ

)
q(x)|, applying (3.29) yields∑

k∈Zn \{0}
|(mλ,ρ

1

)
q(x +k)|. ρλ(n−1)/2

∑
k∈Zn \{0}

|k|−(n−1)/2(1+ρ|k|)−N . (λ/ρ)(n−1)/2.

�
Combining these observations, (3.23) immediately follows, concluding the proof of
Proposition 7.

4. Improvements via multidimensional Weyl sum estimates

By Theorem 4 and the reductions in §2, the uniform resolvent estimates in Theorem 3
are equivalent to the following multiplier bound.

Proposition 17. Let n ≥ 3, λ≥ 1 and ε> 0. If ρ :=λ−βn+ε, then∥∥mλ,ρ(D) f
∥∥

L
2n

n−2 (Tn )
.ε ρλ‖ f ‖

L
2n

n+2 (Tn )
.

Proposition 17 follows by combining the argument from §3 with a more delicate es-
timation of the kernel. The use of the triangle inequality in the first step of the proof of
Lemma 16 introduces losses and the idea is to exploit cancellation between the terms
of the sum. This is analogous to the refinements of Hlawka’s argument found in [KN92,
Mül99, Guo12]. In particular, the exponential sum estimates from [Mül99] imply the
following strengthened version of Lemma 16.

Lemma 18. Let λ≥ 1 and 1& ρ ≥λ−1. For all q ∈N satisfying

(4.1) λ≥ ρ−(q−1−2/n+21−q ),

the kernel estimate∣∣∣ ∑
k∈Zn \{0}

(
mλ,ρ

1

)
q(x +k)

∣∣∣.ε,q λ
ε(ρq+1λ)ωn,q (λ/ρ)(n−1)/2

holds for

ωn,q := n

2n(2q −1)+2q+1 .

Provided ρ and q are chosen so that ρq+1 is much smaller than λ−1, this provides an
improvement over the crude estimate from Lemma 16.

Assuming Lemma 18, it is not difficult to adapt the argument of the previous section
to prove the desired spectral projection bounds.

Proof (of Proposition 17). Let q ∈N satisfy the hypotheses of Lemma 18. Arguing as be-
fore, Lemma 18 implies that

‖mλ,ρ
1 (D)‖1→∞.ε,q ρλ

(n−1)/2 +λε(ρq+1λ)ωn,q (λ/ρ)(n−1)/2

.λε(ρq+1λ)ωn,q (λ/ρ)(n−1)/2.

This refined estimate can be used in place of (3.23) in the proof of Proposition 7. In
particular, one deduces that

‖mλ,ρ(D)‖p ′
1→p1

.ε ρλ+λε(ρq+1λ)2ωn,q /n(n−1)ρ1−3/nλ1−1/n
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which provides an improved version of (3.25). In this case, one is led to the choice ρ =
λ−βn,q+ε, where

βn,q := 1

3
+ n

3
· q −2

3(n2 −1)2q −qn − (3n −2)n
.

To optimize the estimate, q should be chosen so as to make the exponent as large as
possible. Note that βn,q > 1/3 whenever q ≥ 3. Fixing n, a simple calculus exercise
show that βn,q is a decreasing function for q ≥ 4. Direct comparison between βn,3 and
βn,4 then shows that q = 3 is always the optimal choice of parameter, if no additional
constraint is imposed in the form of (4.1). However, it is not difficult to show that ρ :=
λ−βn,3+ε automatically satisfies (4.1), provided ε is sufficiently small. Since βn = βn,3,
Proposition 17 follows. �

It remains to prove Lemma 18. The argument uses two ingredients from [Mül99], the
first of which is an elementary exponential sum bound.

Theorem 19 (Müller [Mül99]). Let n, q ∈N, n ≥ 2, and λ, M ≥ 1 satisfy

(4.2) λ≥ M q−1−2/n+21−q
.

Suppose that w ∈C∞(Rn) and φ ∈C∞(Rn) is real-valued and that these functions satisfy
the following conditions:

i) supp w is contained in B(0, M);
ii) |∂αu w(u)|.α M−|α| and |∂αuφ(u)|.α λM 1−|α| for all u ∈ supp w, α ∈Nn

0 ;
iii) There exists some α(q) ∈Nn

0 with |α(q)| = q such that

|Hess∂α(q)
u φ(u)|& (λM−(q+1))n for all u ∈ supp w .

Then there is a weighted exponential sum estimate∣∣∣ ∑
k∈Zn

e2πiφ(k)w(k)
∣∣∣.ε λεM n(M−(q+1)λ)ωn,q .

Here Hess is used to denote the Hessian determinant and, as before, |α| := α1 +·· ·+
αn .

For the phases and weights arising in the proof of Lemma 18, it is straightforward to
verify conditions i) and ii) of Theorem 19. Condition iii), however, only holds locally and
after applying a linear coordinate transformation. The existence of such a coordinate
transformation is the second ingredient from [Mül99].

Lemma 20 (Müller [Mül99]). For n, q ∈N, n ≥ 2 there exist open regions S` ⊂Rn \ {0} and
integer matrices Q` ∈ GL(n,R) for 1 ≤ `≤ L = L(n, q) ∈Nwith the following properties:

i) Rn \ {0} ⊆⋃L
`=1 S` and if x ∈ S` and λ> 0, then λx ∈ S`;

ii) The functionΦ` : Rn →R given byΦ`(u) := |Q`u| satisfies∣∣∣Hess
∂qΦ`

∂u1∂uq−1
n

(u)
∣∣∣& |u|−(q+1)n for all u ∈Q−1

` S`.

This follows from [Mül99, Lemma 3]. In particular, it suffices to find an open cov-
ering of the unit sphere (rather than the whole of Rn \ {0}) satisfying property ii), since
the full result then follows by homogeneity. The desired cover can then be obtained by
combining [Mül99, Lemma 3] with a compactness argument.

Proof (of Lemma 18). The proof is similar to that of Theorem 1 in [Mül99].
By (3.28), one may write (

mλ,ρ
1

)
q(x) = ρ∑

±
e±2πiλ|x|Iλ,ρ

± (x)
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where

Iλ,ρ
± (x) :=

∫ ∞

0
e±2πi (r−ρ−1λ)ρ|x|a±(ρr x)β

(
r −ρ−1λ

)
(ρr )n−1 dr · (1− η̌(x)).

Applying integration-by-parts as in (3.29), it follows that

(4.3) |∂αx Iλ,ρ
± (x)|.α λ(n−1)/2

|x|(n−1)/2+|α| (1+ρ|x|)−N for all α ∈Nn
0

where N := d100nε−1e. Note that this is a substantially larger (but still admissible) choice
of N than that used in the previous arguments. With this choice, it follows, for instance,
that (1+ρ|x|)−N .ε ρ100n whenever |x| > ρ−1−ε.

Since the functions Iλ,ρ
± decay rapidly when |x| ≥ ρ−1, it suffices to show that

(4.4) sup
x∈[−1/2,1/2]n

∣∣∣ ∑
k∈Zn \{0}

|x+k|≤ρ−1−ε

e2πiλ|x+k|Iλ,ρ
± (x +k)

∣∣∣.ε λερ−1(ρq+1λ)ωn,q (λ/ρ)(n−1)/2

holds for all q ∈N satisfying (4.1). The support of the weight functions Iλ,ρ
± are decom-

posed dyadically by writing

Iλ,ρ
± = ∑

j∈Z
Iλ,ρ
±, j where Iλ,ρ

±, j (x) := Iλ,ρ
± (x)ζ(2− j |x|)

for a suitable choice of ζ ∈ C∞
c (R) satisfying suppζ ⊆ [1/2,2]. For any fixed value of x ∈

[−1/2,1/2]n , there are only O(logρ−1) values of j for which Iλ,ρ
±, j (x + k) is nonzero as

k varies over all k ∈ Zn \ {0} satisfying |x + k| ≤ ρ−1−ε. Thus, by dyadic pigeonholing,

it suffices to show (4.4) holds with Iλ,ρ
± replaced with Iλ,ρ

±, j for some fixed choice of j

satisfying 1. 2 j . ρ−1−ε.
Fix q ∈N satisfying (4.1) and a choice of sign ± and let

wλ, j (u) :=λ−(n−1)/22 j (n−1)/2Iλ,ρ
±, j (u) and φλ(u) :=±λ|u|.

Given any x ∈Rn , define the translates

wλ, j
x (u) := wλ, j (x +u) and φλx (u) :=φλ(x +u),

and observe that, by (4.3), if u ∈ supp wλ, j
x , then

(4.5) |∂αu wλ, j
x (u)|.α 2− j |α| and |∂αuφλx (u)|.α λ2 j (1−|α|) for all α ∈Nn

0 .

Thus, in view of the above reductions, it suffices to show that

(4.6) sup
x∈Rn

∣∣∣ ∑
k∈Zn

e2πiφλx (k)wλ, j
x (k)

∣∣∣.ε,q λ
ε2 j n(2− j (q+1)λ)ωn,q .

Note that the reduction in (4.6) relies upon the (readily checked) fact

n +1

2
− (q +1)ωn,q > 0 for all n, q ∈Nwith n ≥ 2

which, in particular, implies that

2 j (n+1)/22− j (q+1)ωn,q . ρ−O(ε)ρ−1ρ(q+1)ωn,qρ−(n−1)/2.

The estimate (4.6) will follow from Theorem 19, although some preparatory steps are
needed to ensure the conditions of the theorem hold in this case.

Let S` ⊂ Rn \ {0} and Q` ∈ GL(n,R) for 1 ≤ ` ≤ L be open sets and integer matrices,
respectively, satisfying the properties i) and ii) from Lemma 20. By forming a homo-
geneous partition of unity adapted to the (S`)L

`=1 and pigeonholing, it suffices to show
that

sup
x∈Rn

∣∣∣ ∑
k∈Zn

e2πiφλx (k)wλ, j
x (k)ψx (k)

∣∣∣.λε2 j n(2− j (q+1)λ)ωn,q ,
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where ψx (u) :=ψ(x +u) for ψ ∈C∞(Rn \ {0}) real-valued, homogeneous of degree 0 and
supported in S := S`0 for some 1 ≤ `0 ≤ L.

Let Q :=Q`0 and note that the lattice QZn is a finite index subgroup ofZn . Thus, there
exists some B ⊆Zn with #B.q 1 such that

Zn = ⋃
b∈B

(b +QZn),

where the union is disjoint. Fix b ∈B and write

φ̃λx (u) :=φλx (b +Qu) and w̃λ, j
x (u) := wλ, j

x (b +Qu)ψx (b +Qu).

Once again by pigeonholing, the desired estimate would follow from

sup
x∈Rn

∣∣∣ ∑
k∈Zn

e2πi φ̃λx (k)w̃λ, j
x (k)

∣∣∣.λε2 j n(2− j (q+1)λ)ωn,q .

To conclude the proof, it suffices to show that for any x ∈ Rn , the functions φ̃λx and

w̃λ, j
x satisfy the hypotheses of Theorem 19 with M ∼q 2 j andα(q) := (1,0, . . . , q−1); since

q is chosen so as to satisfy (4.1), one may safely assume (4.2) holds for such a choice of
M . Clearly the support condition i) holds. By (4.5) and the homogeneity of ψ, it follows
that

|∂αu w̃λ, j
x (u)|.α 2− j |α| and |∂αu φ̃λx (u)|.α λ2 j (1−|α|) for all α ∈Nn

0 ,

which is condition ii). Finally, Lemma 20 ensures that∣∣Hess∂α(q)
u φ̃λx (u)

∣∣& (λ2− j (q+1))n for all u ∈ supp w̃λ, j
x .

Indeed, if u ∈ supp w̃λ, j
x , then x +b +Qu ∈ S and so x̃ +u ∈ Q−1S for x̃ := Q−1(x +b). If

Φ(u) := |Qu|, then φ̃λx (u) =±λΦ(x̃ +u) and so Lemma 20 implies that

|Hess∂α(q)
u φ̃λx (u)| =λn |Hess∂α(q)

u Φ(x̃ +u)|&λn2−(q+1)n ,

as required. �
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